• Title/Summary/Keyword: poly[(R)-3-hydroxybutyrate]

Search Result 30, Processing Time 0.018 seconds

Biodegradation Characteristics of Poly-3-hydroxybutyrate, $Sky-Green^R$ and $Mater-Bi^R$ by Soil Bacteria (토양세균의 Poly-3-hydroxybutyrate,$Sky-Green^R$$Mater-Bi^R$분해 특성)

  • 이애리;김말남
    • Korean Journal of Microbiology
    • /
    • v.36 no.4
    • /
    • pp.299-305
    • /
    • 2000
  • Degradation behavior of the three commercial biodegradable polymers, namely poly(3-hydroxybutyrate) (PHB) Sky-Green/sup R/ (SG) and Mater-Bi/sup R/ (MB) was investigated using bacteria isolated from activated sludge and farm soil. Three PHB degrading bacteria, three SG degrading bacteria and one MB degrading bacteria were isolated. The PHB degrading bacteria were identified to be Flavimonas oryzihabitans, Corynebacterium pseudodiphtheriticum and Micrococcus diversus, while Pseudomonas vesicuraris, Pasteurlla multocida and Flavobacterium odoratum were identified as SG degrading bacteria. As for MB, Pseudomonas vesicuraris was isolated. The shake flask test for 28 days indicated that the rate of biodegradation of PHB, SG and MB in terms of weight loss were about 44∼69% 25∼32% and 29% respectively. The surface morphology of PHB, SG andMB films before and after degradation by microorganisms in an activated sludge soil was observed under SEM, demonstrating that the film surface had a very porous structure, and that microorganisms colonized heavily on the film surface. TOC and pH variation as a result of abiotic hydrolysis, or microbial growth in the absence of the polymers were compared to those due to degradation by F. oryzihabitans. Abiotic hydrolysis of PHB was three times as fast as that of SG and MB. Addition of yeast extract to the basal liquid medium accelerated the biodegradation of the polymers. Biodegradation of PHB was always faster than that of SG and MB irrespectively of the presence of yeast extract in the basal liquid medium.

  • PDF

재조합 대장균에 의한 유청으로부터 Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) 합성

  • Kim, Beom-Su;Lee, Sang-Yeop
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.321-324
    • /
    • 2001
  • Two recombinant Escherichia coli strains, GCSC6576 harboring a plasmid pSYL107 containing the Ralstonia eutropha polyhyclroxyalkanoate (PHA) biosynthesis genes and a fadR atoC mutant LS5218 harboring a plasmid pJC4 containing the Alcaligenes latus PHA biosynthesis genes were compared for their ability to synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] from whey as the sale carbon source. With the pH-stat fed-batch culture of E. coli LS5218, 、 ,ve obtained a cell concentration, a P(3HB-co-3HV) concentration. a P(3HB-co-3HV) content, and a 3HV fraction of 31.8 g/L, 10.6 g/L, 33.4 wt%. and 6.26 mol%, respectively at 39 h.

  • PDF

Isolation and Characterization of a Methylotroph Producing 3-hydroxybutyrate-3-hydroxyvalerate Copolymer

  • JUNG HOE KIM;KIM, PIL;SEON WON KIM;GYUN MIN LEE;HYUN SOO LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.167-171
    • /
    • 1995
  • A bacterial strain C-02 using methanol as a carbon source was isolated from Gumi Industrial Estate and selected based on its rapid growth and capability of poly-$\beta$-hydroxybutyrate accumulation. Characteristics of strain C-02 showed that it belongs to the Methylococcaceae family, Type II subgroup. Strain C-02 could incorporate valerate into the PHB chain to form 3-hydroxybutyrate and 3-hydroxyvalerate (P(3HB-co-3HV)). Among various nutrient limitation tests, the nitrogen limitation test resulted in the highest content of P(3HB-co-3HV) per dry cell weight, 50$%$. Under the nitrogen limited condition, the average molecular weight of P(3HB-co-3HV) obtained was determined to be approximately $2.8\times 10^5$ daltons.

  • PDF

Cell Surface Display of Poly(3-hydroxybutyrate) Depolymerase and its Application

  • Lee, Seung Hwan;Lee, Sang Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.244-247
    • /
    • 2020
  • We have expressed extracellular poly(3-hydroxybutyrate) (PHB) depolymerase of Ralstonia pickettii T1 on the Escherichia coli surface using Pseudomonas OprF protein as a fusion partner by C-terminal deletion-fusion strategy. Surface display of depolymerase was confirmed by flow cytometry, immunofluorescence microscopy and whole cell hydrolase activity. For the application, depolymerase was used as an immobilized catalyst of enantioselective hydrolysis reaction for the first time. After 48 h, (R)-methyl mandelate was completely hydrolyzed, and (S)-mandelic acid was produced with over 99% enantiomeric excess. Our findings suggest that surface displayed depolymerase on E. coli can be used as an enantioselective biocatalyst.

Expression Analysis of phbC Coding for Poly-3-hydroxybutyrate (PHB) Synthase of Rhodobacter sphaeroides

  • Kho, Dhong-Hyo;Yang, Jai-Myung;Kim, Kun-Soo;Lee, Jeong-Kug
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.310-316
    • /
    • 2001
  • Poly-3-hydroxybutyrate (PHB) synthase catalyzed the last enzymic step to synthesize the intracellular PHB of Rhodobacter sphaeroides. No PHB was detected when the phbC coding for PhB synthase was interrupted, and its expression was regulated at the level of transcription. The cellular PHB content increased about four- to six-fold during the growth transition from the exponential to the early stationary phase under both aerobic and photoheterotrophic conditions. The PHB content during the aerobic growth seemed to be determined by the PhB synthase activity. However, the PHB synthase activity of photoheterotrophically grown cells did not correlate with the PhB content, suggesting a photoheterotrophic regulation different from the aerobic control. Thus, the PHB content of R. sphaeroides was regulated at the transcription level only under aerobic conditions.

  • PDF

Mass Production of Poly(3-Hydroxybutyrate) by Fed-Batch Cultures of Ralstonia eutropha with Nitrogen and Phosphate Limitation

  • Ryu, Hee-Wook;Cho, Kyung-Suk;Kim, Beom-Soo;Chang, Yong-Keun;Chang, Ho-Nam;Shim, Hyun-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.751-756
    • /
    • 1999
  • For mass production of poly(3-hydroxybutyrate) (PHB), high cell density cultures of Ralstonia eutropha were carried out in 2.5-1 and 60-1 fermentors by two fed-batch culture techniques of nitrogen and phosphate limitation. When the nitrogen limitation technique was employed using both an on-line glucose monitoring and control system, a high concentration level of PHB (121g/l) was obtained in the small-scale fermentor of 2.5 1. However, the PHB concentration obtained in a large-scale fermentor of 60 1 only turned out to be 60g/l. In contrast, when another fed-batch culture technique of the phosphate-limitation employing dissolved oxygen (DO) stat glucose feeding was used, a large amount of PHB was successfully produced in both 60-1 and 2.5-1 fermentors. In a 2.5-1 fermentor, concentrations of PHB and cells obtained in 58 h were 175 and 210 g/l, respectively, which corresponded to the PHB productivity level of 3.02 g/l/h. In a 60-1 fermentor, a final cell concentration of 221 g/l and a PHB concentration of 180 g/l with PHB productivity level of 3.75 g/l/h were obtained in 48h. PHB content and yield from glucose were 81% and 0.38g PHB/g glucose, respectively. These data suggest that the phosphate limitation technique is more effective compared to nitrogen limitation in the mass production of PHB by R. eutropha of a large scale.

  • PDF

In Vivo $^{13}C$-NMR Spectroscopic Study of Polyhydroxyalkanoic Acid Degradation Kinetics in Bacteria

  • Oh, Jung-Sook;Choi, Mun-Hwan;Yoon, Sung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1330-1336
    • /
    • 2005
  • Polyhydroxyalkanoic acid (PHA) inclusion bodies were analyzed in situ by $^{13}C$-nuclear magnetic resonance ($^{13}C$-NMR) spectroscopy. The PHA inclusion bodies studied were composed of poly(3-hydroxybutyrate) or poly(3hydroxybutyrate-co-4-hydroxybutyrate), which was accumulated in Hydrogenophaga pseudoflava, and medium-chain-length PHA (MCL-PHA), which was accumulated in Pseudomonas fluorescens BM07 from octanoic acid or 11-phenoxyundecanoic acid (11-POU). The quantification of the $^{13}C$-NMR signals was conducted against a standard compound, sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS). The chemical shift values for the in vivo NMR spectral peaks agreed well with those for the corresponding purified PHA polymers. The intracellular degradation of the PHA inclusions by intracellular PHA depolymerase(s) was monitored by in vivo NMR spectroscopy and analyzed in terms of first-order reaction kinetics. The H. pseudoflava cells were washed for the degradation experiment, transferred to a degradation medium without a carbon source, but containing 1.0 g/l ammonium sulfate, and cultivated at $35^{\circ}C$ for 72 h. The in vivo NMR spectra were obtained at $70^{\circ}C$ for the short-chain-length PHA cells whereas the spectra for the aliphatic and aromatic MCL-PHA cells were obtained at $50^{\circ}C\;and\;80^{\circ}C$, respectively. For the H. pseudoflava cells, the in vivo NMR kinetics analysis of the PHA degradation resulted in a first-order degradation rate constant of 0.075/h ($r^{2}$=0.94) for the initial 24 h of degradation, which was close to the 0.050/h determined when using a gas chromatographic analysis of chloroform extracts of sulfuric acid/methanol reaction mixtures of dried whole cells. Accordingly, it is suggested that in vivo $^{13}C$-NMR spectroscopy is an important tool for studying intracellular PHA degradation in terms of kinetics.

High Level Production of Supra Molecular Weight Poly(3-Hydroxybutyrate) by Metabolically Engineered Escherichia coli

  • Park, Jong-il;Lee, Sang-Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.196-200
    • /
    • 2004
  • The supra molecular weight poly(〔R〕-3-hydroxybutyrate) (PH B), having a molecular weight greater than 2 million Da, has recently been found to possess improved mechanical properties compared with the normal molecular weight PHB, which has a molecular weight of less than 1 million Da. However, applications for this PHB have been hampered due to the difficulty of its production. Reported here, is the development of a new metabolically engineered Escherichia coli strain and its fermentation for high level production of supra molecular weight PHB. Recombinant E. coli strains, harboring plasm ids of different copy numbers containing the Alcaligenes latus PHB biosynthesis genes, were cultured and the molecular weights of the accumulated PHB were compared. When the recombinant E. coli XL1-Blue, harboring a medium-copy-number pJC2 containing the A. latus PHB biosynthesis genes, was cultivated by fed-batch culture at pH 6.0, supra molecular weight PHB could be produced at up to 89.8 g/L with a productivity of 2.07 g PHB/L-h. The molecular weight of PHB obtained under these conditions was as high as 22 MDa, exceeding by an order of magnitude the molecular weight of PHB typically produced in Ralstonia eutropha or recombinant E. coli.

Identification and Analysis of Putative Polyhydroxyalkanoate Synthase (PhaC) in Pseudomonas fluorescens

  • Lim, Ju Hyoung;Rhie, Ho-Gun;Kim, Jeong Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1133-1140
    • /
    • 2018
  • Pseudomonas fluorescens KLR101 was found to be capable of producing polyhydroxyalkanoate (PHA) using various sugars and fatty acids with carbon numbers ranging from 2 to 6. The PHA granules consisted mainly of a poly(3-hydroxybutyrate) homopolymer and/or poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer. Genomic DNA of P. fluorescens was fractionated and cloned into a lambda library, in which a 5.8-kb fragment that hybridized to a heterologous phaC probe from Ralstonia eutropha was identified. In vivo expression in Klebsiella aerogenes KC2671 (pUMS), restriction mapping, Southern hybridization experiments, and sequencing data revealed that PHA biosynthesis by P. fluorescens relied upon a polypeptide encoded by a 1,683-bp non-operonal ORF, which was preceded by a possible -24/-12 promoter and highly similar to DNA sequences of a gene encoding PHA synthase in the genus Pseudomonas. In vivo expression of the putative PHA synthase gene ($phaC_{Pf}$) in a recombinant Escherichia coli strain was investigated by using glucose and decanoate as substrates. E. coli (${phaC_{Pf}}^+$, pUMS) grown in medium containing glucose accumulated PHA granules consisting mainly of 3-hydroxybutyrate, whereas only a trace amount of 3-hydroxydecanoate was detected from an E. coli fadR mutant (${phaC_{Pf}}^+$) grown in medium containing decanoate. In vitro enzymatic assessment experiments showed that 3-hydroxybutyryl-CoA was efficiently used as a substrate of purified $PhaC_{Pf}$, suggesting that the putative PHA synthase of P. fluorescens utilizes mainly short-chain-length PHA precursors as a substrate.