Browse > Article
http://dx.doi.org/10.4014/jmb.1803.03006

Identification and Analysis of Putative Polyhydroxyalkanoate Synthase (PhaC) in Pseudomonas fluorescens  

Lim, Ju Hyoung (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Rhie, Ho-Gun (Department of Biology, Kyung Hee University)
Kim, Jeong Nam (Department of Microbiology, College of Natural Sciences, Pusan National University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.7, 2018 , pp. 1133-1140 More about this Journal
Abstract
Pseudomonas fluorescens KLR101 was found to be capable of producing polyhydroxyalkanoate (PHA) using various sugars and fatty acids with carbon numbers ranging from 2 to 6. The PHA granules consisted mainly of a poly(3-hydroxybutyrate) homopolymer and/or poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer. Genomic DNA of P. fluorescens was fractionated and cloned into a lambda library, in which a 5.8-kb fragment that hybridized to a heterologous phaC probe from Ralstonia eutropha was identified. In vivo expression in Klebsiella aerogenes KC2671 (pUMS), restriction mapping, Southern hybridization experiments, and sequencing data revealed that PHA biosynthesis by P. fluorescens relied upon a polypeptide encoded by a 1,683-bp non-operonal ORF, which was preceded by a possible -24/-12 promoter and highly similar to DNA sequences of a gene encoding PHA synthase in the genus Pseudomonas. In vivo expression of the putative PHA synthase gene ($phaC_{Pf}$) in a recombinant Escherichia coli strain was investigated by using glucose and decanoate as substrates. E. coli (${phaC_{Pf}}^+$, pUMS) grown in medium containing glucose accumulated PHA granules consisting mainly of 3-hydroxybutyrate, whereas only a trace amount of 3-hydroxydecanoate was detected from an E. coli fadR mutant (${phaC_{Pf}}^+$) grown in medium containing decanoate. In vitro enzymatic assessment experiments showed that 3-hydroxybutyryl-CoA was efficiently used as a substrate of purified $PhaC_{Pf}$, suggesting that the putative PHA synthase of P. fluorescens utilizes mainly short-chain-length PHA precursors as a substrate.
Keywords
Pseudomonas fluorescens KLR101; polyhydroxyalkanoate (PHA); putative PHA synthase gene; short-chain-length PHA precursors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hall B, Baldwin J , Rhie HG, Dennis D. 1998. Cloning o f the Nocardia corallina polyhydroxyalkanoate synthase gene and production of poly-(3-hydroxybutyrate-co-3-hydroxyhexanoate) and poly-(3-hydroxyvalerate-co-3-hydroxyheptanoate). Can. J. Microbiol. 44: 687-691.   DOI
2 Kalousek S, Lubitz W. 1995. High-level poly(beta-hydroxybutyrate) production in recombinant Escherichia coli in sugarfree, complex medium. Can. J. Microbiol. 41(Suppl 1): 216-221.   DOI
3 Zorn H, Breithaupt DE, Takenberg M, Schwack W, Berger RG. 2003. Enzymatic hydrolysis of carotenoid esters of marigold flowers (Tagetes erecta L.) and red paprika (Capsicum annuum L.) by commercial lipases and Pleurotus sapidus extracellular lipase. Enzyme Microb. Technol. 32: 623-628.   DOI
4 Qi Q, Steinbuchel A, Rehm BH. 1998. Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): inhibition of fatty acid beta-oxidation by acrylic acid. FEMS Microbiol. Lett. 167: 89-94.
5 DiRusso CC, Nunn WD. 1985. Cloning and characterization of a gene (fadR) involved in regulation of fatty acid metabolism in Escherichia coli. J. Bacteriol. 161: 583-588.
6 Ostle AG, Holt JG. 1982. Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl. Environ. Microbiol. 44: 238-241.   DOI
7 Brandl H, Gross RA, Lenz RW, Fuller RC. 1988. Pseudomonas oleovorans as a source of poly(beta-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl. Environ. Microbiol. 54: 1977-1982.
8 Qi Q, Steinbuchel A, Rehm BHA. 2000. In vitro synthesis of poly(3-hydroxydecanoate): purification and enzymatic characterization of type II polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 54: 37-43.   DOI
9 Ellman GL. 1959. Tissue sulfhydryl groups. Arch. Biochem Biophys. 82: 70-77.   DOI
10 Gerngross TU, Martin DP. 1995. Enzyme-catalyzed synthesis of poly[(R)-(-)-3-hydroxybutyrate]: formation of macroscopic granules in vitro. Proc. Natl. Acad. Sci. USA 92: 6279-6283.   DOI
11 Shine J, Dalgarno L. 1975. Determinant of cistron specificity in bacterial ribosomes. Nature 254: 34-38.   DOI
12 Gerngross TU, Snell KD, Peoples OP, Sinskey AJ, Csuhai E, Masamune S, et al. 1994. Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus: evidence for a required posttranslational modification for catalytic activity. Biochemistry 33: 9311-9320.   DOI
13 Kraak MN, Kessler B, Witholt B. 1997. In vitro activities of granule-bound poly[(R)-3-hydroxyalkanoate]polymerase C1 of Pseudomonas oleovorans - development of an activity test for medium-chain-length-poly(3-hydroxyalkanoate) polymerases. Eur. J. Biochem. 250: 432-439.   DOI
14 Huisman GW, Deleeuw O, Eggink G, Witholt B. 1989. Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl. Environ. Microbiol. 55: 1949-1954.
15 Dixon R. 1986. The xylABC promoter from the Pseudomonas putida Tol plasmid is activated by nitrogen regulatory genes in Escherichia coli. Mol. Gen. Genet. 203: 129-136.   DOI
16 Huisman GW, Wonink E, Meima R, Kazemier B, Terpstra P, Witholt B. 1991. Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans. Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J. Biol. Chem. 266: 2191-2198.
17 Song J, Jensen RA. 1996. PhhR, a divergently transcribed activator of the phenylalanine hydroxylase gene cluster of Pseudomonas aeruginosa. Mol. Microbiol. 22: 497-507.   DOI
18 Nishikawa T, Ogawa K, Kohda R, Wang ZX, Miyasaka H, Umeda F, et al. 2002. Cloning and molecular analysis of poly(3-hydroxyalkanoate) biosynthesis genes in Pseudomonas aureofaciens. Curr. Microbiol. 44: 132-135.   DOI
19 Ciesielski S, Cydzik-Kwiatkowska A, Pokoj T, Klimiuk E. 2006. Molecular detection and diversity of medium-chainlength polyhydroxyalkanoates-producing bacteria enriched from activated sludge. J. Appl. Microbiol. 101: 190-199.   DOI
20 Matsusaki H, Manji S, Taguchi K, Kato M, Fukui T, Doi Y. 1998. Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3. J. Bacteriol. 180: 6459-6467.
21 Timm A, Steinbuchel A. 1992. Cloning and molecular analysis of the poly(3-hydroxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1. Eur. J. Biochem. 209: 15-30.   DOI
22 Saitou N, Nei M. 1987. The neighbor-joining method - a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
23 Rhie HG, Dennis D. 1995. Role of fadR and atoC (Con) mutations in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in recombinant pha(+) Escherichia coli. Appl. Environ Microbiol. 61: 2487-2492.
24 Brosius J. 1988. Expression vectors employing lambda-, trp-, lac-, and lpp-derived promoters. Biotechnology 10: 205-225.
25 Tabor S, Richardson CC. 1985. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA 82: 1074-1078.   DOI
26 Schubert P, Steinbuchel A, Schlegel HG. 1988. Cloning of the Alcaligenes eutrophus genes for synthesis of poly-betahydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J. Bacteriol. 170: 5837-5847.   DOI
27 Fitch WM. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20: 406-416.   DOI
28 Anderson AJ, Dawes EA. 1990. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450-472.
29 Madison LL, Huisman GW. 1999. Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21-53.   DOI
30 Peoples OP, Sinskey AJ. 1989. Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J. Biol. Chem. 264: 15298-15303.
31 Slater SC, Voige WH, Dennis DE. 1988. Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J. Bacteriol. 170: 4431-4436.   DOI
32 Kadouri D, Jurkevitch E , Okon Y, Castro-Sowinski S. 2005. Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit. Rev. Microbiol. 31: 55-67.   DOI
33 Solaiman DK, Ashby RD, Foglia TA. 2000. Rapid and specific identification of medium-chain-length polyhydroxyalkanoate synthase gene by polymerase chain reaction. Appl. Microbiol. Biotechnol. 53: 690-694.   DOI
34 Rehm BH, Steinbuchel A. 1999. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int. J. Biol. Macromol. 25: 3-19.   DOI
35 Lee HJ, Choi MH, Kim TU, Yoon SC. 2001. Accumulation of polyhydroxyalkanoic acid containing large amounts of unsaturated monomers in Pseudomonas fluorescens BM07 utilizing saccharides and its inhibition by 2-bromooctanoic acid. Appl. Environ. Microbiol. 67: 4963-4974.   DOI
36 Sheu DS, Wang YT, Lee CY. 2000. Rapid detection of polyhydroxyalkanoate-accumulating bacteria isolated from the environment by colony PCR. Microbiology 146: 2019-2025.   DOI
37 Timm A, Steinbuchel A. 1990. Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl. Environ. Microbiol. 56: 3360-3367.
38 Kumar S, Tamura K, Nei M. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5: 150-163.   DOI
39 Tobin KM, O'Connor KE. 2005. Polyhydroxyalkanoate accumulating diversity of Pseudomonas species utilising aromatic hydrocarbons. FEMS Microbiol. Lett. 253: 111-118.   DOI
40 Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.   DOI