• Title/Summary/Keyword: pole sensitivity

Search Result 55, Processing Time 0.029 seconds

Kinematic Parameter Optimization of Jumping Robot Using Energy Conversion of Elastic Body (탄성체의 에너지 변환을 이용한 점프 로봇의 기구변수 최적화)

  • Choi, JaeNeung;Lee, Sangho;Jeong, Kyungmin;Seo, TaeWon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.53-58
    • /
    • 2016
  • Various jumping robot platforms have been developed to carry out missions such as rescues, explorations, or inspections of dangerous environments. We suggested a jumping robot platform using energy conversion of the elastic body like the bar of a pole vault, which is the main part in which elastic force occurs. The compliant link was optimized by an optimization method based on Taguchi methodology, and the robot's leaping ability was improved. Among the parameters, the length, width, and thickness of the link were selected as design variables first while the others were fixed. The level of the design variables was settled, and an orthogonal array about its combination was made. In the experiment, dynamic simulations were conducted using the DAFUL program, and response table and sensitivity analyses were performed. We found optimized values through a level average analysis and sensitivity analysis. As a result, the maximum leaping height of the optimized robot increased by more than 6.2% compared to the initial one, and these data will be used to design a new robot.

A Study on Synthesis of The Low Pass NIC Filter (Low Pass NIC Filter 설계에 관한 고찰)

  • 이정한;이영수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.4 no.1
    • /
    • pp.13-21
    • /
    • 1967
  • A low pass filter is synthesized with R, C and negative impedance converters(NIC). The filter has a 4-th order elliptic function, which gives best magnitude approximation with equi-ripple characteristics both in pass and stop band. And experimental investigations have been made on the effect of the anticipated deviation of the NIC conversion factor and of possible loaded operation. Through the study, it has been cocluded that: 1. For minimum pole-zero sensitivity with respect to the NIC conversion factor, the network of a parallel RC-NIC configuration is preferable and the Horowitz polynomial decomposition method is applied in the synthesis procedure. 2. A few percentage variation of the NIC conversion factor changes the frequency and amplitude characteristics of the filter by nearly negligible amount. 3. With a load resistance below the critical value, the filter turns into an oscillator.

  • PDF

Electromagnetic Analysis of a Flat-Type Proportional Solenoid by the Reluctance Method (자기저항기법에 의한 평면형 비례전자석의 전자기 해석)

  • Hong Yeh-Sun;Kwon Yong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.99-106
    • /
    • 2005
  • In this study, the electromagnetic characteristics of a flat-type two-dimensional proportional solenoid were analyzed by the magnetic reluctance method. The equivalent magnetic circuit equation for the solenoid was derived by modeling the reluctance of air gaps and magnetic structural components such as pole core, armature and yoke. It was solved iteratively because of the nonlinear magnetization properties of the iron parts. The solutions showed good agreement with experimental data. Based on the equivalent magnetic circuit equation, the influence of design parameters on the force-to-armature displacement curves was mathematically derived and experimentally verified. In this way, dominant design parameters could be analytically determined.

Optimal Design of SR Machine for LSEV using CAD and Genetic Algorithm (GA와 상용설계기법을 이용한 저속전기자동차용 SRM의 최적화 설계)

  • Kim Tae-Hyoung;Ahn Jin-Woo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.7
    • /
    • pp.317-322
    • /
    • 2005
  • Advantages of switched reluctance motor(SRM) include a simple structure, the ability of operation in hash environments and under partial hardware failures, and a wide speed range. However design of SRM for industrial applications is very difficult because motor's inherent none-linearity and sensitivity of design parameter. In this paper, an optimal method for determining design parameters of a switched reluctance motor is researched. The dominant design parameters are stator and rotor pole arc and switching on and off angle. The parameters affecting performance are examined and selected using evolutionary computations and commercial CAD Program. The proposed design process is very fast. reliable and easy to access. The simulated design method proposed is compared with conventional procedure.

Sensitivity Analysis of Design Parameters for Reduction of Cogging Torque in Brushless DC Motors used for Automobile Part (자동차 부품용 BLDC 모터 내의 코깅 토크 저감을 위한 설계 변수의 민감도 해석)

  • 황상문
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.235-243
    • /
    • 1998
  • For motor operation at low speeds and loads, torque pulsation by the cogging torque is often a source of vibration and control difficulty. In this paper, the magnetic field of a motor is calculated by finite element method. The periodic cogging torque is determined using Maxwell stress method and time stepping method, and then decomposed using fourier series expansion, The purpose of this paper is to characterize design parameters on the cogging torque and to design a permanent magnet motor with a cogging torque less vulnerable to vibration, without sacrificing the motor performance. The design parameters include stator slot width, permanent magnet slot width, airgap length and magnetization direction. A new design with a less populated frequency spectrum of the cogging torque is proposed after characterizing individual effect of design parameters. Magnet pole edge shaping, by gradually increasing the cogging torque with reduced higher harmonics.

  • PDF

Analysis of Outer Rotor Type BLDC motor vibration characteristics according to slot combination (Outer Rotor Type BLDC 모터의 슬롯 수에 따른 진동 특성 분석)

  • Bang, Ki-Chang;Kim, Kwang-Seok;Kwon, Joong-Hak;Ree, Yeong-Uk;Hwang, Sang-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.196-201
    • /
    • 2008
  • This paper is about electromagnetic vibration source in outer rotor type of BLDC motors. Experiments are carried out with three pole-slot combinations which are 6 slots, 12 slots, and 24 slots with 4 poles rotor. According to results, vibration sources separate into electromagnetic and mechanical factors. Using the finite element method (FEM), It is analyed that vibration characteristics of electromagnetic source in each type. This paper shows electromagnetic sensitivity to vibration, and introduces necessary point in lower vibration motors. Also rotor balance is important to prevent uneven distribution of magnetic flux between rotor and stator.

  • PDF

Electromagnetic Analysis of a Flat-Type Proportional Solenoid by the Reluctance Method

  • Hong, Yeh-Sun;Kwon, Yong-Cheol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.46-51
    • /
    • 2006
  • In this study, the electromagnetic characteristic of a flat-type two-dimensional proportional solenoid were analyzed by the magnetic reluctance method. The magnetic equivalent circuit equation for the solenoid was derived by modeling the reluctance of air gaps and magnetic structural components such as pole core, armature and yoke. It was solved iteratively because of the nonlinear magnetization properties of iron parts. The solutions showed good agreement with experimental data. Based on the magnetic equivalent circuit equation, the influence of design parameters on force-to-armature displacement curves was mathematically derived and experimentally verified. In this way, dominant design parameters could be analytically determined.

Model Reference Adaptive Control Using Non-Euclidean Gradient Descent

  • Lee, Sang-Heon;Robert Mahony;Kim, Il-Soo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.330-340
    • /
    • 2002
  • In this Paper. a non-linear approach to a design of model reference adaptive control is presented. The approach is demonstrated by a case study of a simple single-pole and no zero, linear, discrete-time plant. The essence of the idea is to generate a full non-linear model of the plant dynamics and the parameter adaptation dynamics as a gradient descent algorithm with respect to a Riemannian metric. It is shown how a Riemannian metric can be chosen so that the modelled plant dynamics do in fact match the true plant dynamics. The performance of the proposed scheme is compared to a traditional model reference adaptive control scheme using the classical sensitivity derivatives (Euclidean gradients) for the descent algorithm.

A Study for the Optimum Joint Set Orientations and Its Application to Slope Analysis (사면해석을 위한 최적의 절리군 대표방향성 도출 및 활용기법 연구)

  • Cho, Taechin
    • Tunnel and Underground Space
    • /
    • v.28 no.4
    • /
    • pp.343-357
    • /
    • 2018
  • Algorithm which can analyze the slope failure behavior utilizing the comprehensive information of the dense point of joint poles and the joint set orientations, both of which are obtained statistically, and the defect pattern of pole distribution has been developed. This method overcomes the potential incorrectness of the hemispheric projection method utilizing the joint set orientations only and also enhances the reliability of slope failure analysis. To this end a method capable of calculating the joint dispersion index directly from the joint pole distribution, instead of contour map, has been devised. The representative orientations for the slope failure analysis has been determined by considering the number and orientations of cone angle-dependent joint sets as well as the joint dispersion index. By engaging these representative orientations to the hemispheric projection analysis more reliable slope failure examination has been carried out. Sensitivity analysis for the potentially unstable slope of plane failure mode has been performed. Significance of joint strength index and the external seismic loading on the slope stability has been fully analyzed.

Magnetic Resonance Imaging of Lumen Wall using Quadrature-typed Inside-out Receiver Coil (회전자계 역수신 코일을 이용한 관벽의 자기공명 영상)

  • 문치웅;조종운
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.5
    • /
    • pp.385-392
    • /
    • 2001
  • This study Proposes a quadrature-typed inside-out receiver coil to obtain magnetic resonance(MR) images of lumen wall. This means that the coil should receive the signals from out-side of receiver coil. This coil has wide and uniform sensitive region to compare with previous coils such as anti-solenoid coil, octal-pole coil and so on. These coils have the disadvantages that sensitive region is narrow and inhomogenous. The proposed coil is consist of two saddle coils of which directions are orthogonal to one another. The sensitivity maps of octal-Pole coil single-saddle coil and quadrature-typed inside-out coil were obtained by computer simulation. And phantom images for each coil were obtained to evaluate the performances of the coil using both 1.5T superconducting and 0.3 Permanent magnet MRI system. The uniformity of quadrature coil's sensitivity map was superior to that of octal-polel coil. Experimentally measured SNR of quadrature coil is also 36% higher than that of single-saddle coil This study shows the possibility of quadrature-typed inside-out receiver coil for the MR lumen wall images.

  • PDF