• Title/Summary/Keyword: polar derivative of polynomial

Search Result 10, Processing Time 0.018 seconds

SOME INEQUALITIES ON POLAR DERIVATIVE OF A POLYNOMIAL

  • Devi, Khangembam Babina;Krishnadas, Kshetrimayum;Chanam, Barchand
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.141-148
    • /
    • 2022
  • Let p(z) be a polynomial of degree n having no zero in |z| < k, k ≤ 1, then Govil proved $$\max_{{\mid}z{\mid}=1}{\mid}p^{\prime}(z){\mid}{\leq}{\frac{n}{1+k^n}}\max_{{\mid}z{\mid}=1}{\mid}p(z){\mid}$$, provided |p'(z)| and |q'(z)| attain their maximal at the same point on the circle |z| = 1, where $$q(z)=z^n{\overline{p(\frac{1}{\overline{z}})}}$$. In this paper, we extend the above inequality to polar derivative of a polynomial. Further, we also prove an improved version of above inequality into polar derivative.

TURÁN-TYPE Lr-INEQUALITIES FOR POLAR DERIVATIVE OF A POLYNOMIAL

  • Robinson Soraisam;Mayanglambam Singhajit Singh;Barchand Chanam
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.731-751
    • /
    • 2023
  • If p(z) is a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for any complex number α with |α| ≥ k, and r ≥ 1, Aziz [1] proved $$\left{{\int}_{0}^{2{\pi}}\,{\left|1+k^ne^{i{\theta}}\right|^r}\,d{\theta}\right}^{\frac{1}{r}}\;{\max\limits_{{\mid}z{\mid}=1}}\,{\mid}p^{\prime}(z){\mid}\,{\geq}\,n\,\left{{\int}_{0}^{2{\pi}}\,{\left|p(e^{i{\theta}})\right|^r\,d{\theta}\right}^{\frac{1}{r}}.$$ In this paper, we obtain an improved extension of the above inequality into polar derivative. Further, we also extend an inequality on polar derivative recently proved by Rather et al. [20] into Lr-norm. Our results not only extend some known polynomial inequalities, but also reduce to some interesting results as particular cases.

SOME INEQUALITIES ON POLAR DERIVATIVE OF A POLYNOMIAL

  • N., Reingachan;Robinson, Soraisam;Barchand, Chanam
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.797-805
    • /
    • 2022
  • Let P(z) be a polynomial of degree n. A well-known inequality due to S. Bernstein states that if P ∈ Pn, then $$\max_{{\mid}z{\mid}=1}\,{\mid}P^{\prime}(z){\mid}\,{\leq}n\,\max_{{\mid}z{\mid}=1}\,{\mid}P(z){\mid}$$. In this paper, we establish some extensions and refinements of the above inequality to polar derivative and some other well-known inequalities concerning the polynomials and their ordinary derivatives.

INEQUALITIES CONCERNING POLYNOMIAL AND ITS DERIVATIVE

  • Zargar, B.A.;Gulzar, M.H.;Akhter, Tawheeda
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.631-638
    • /
    • 2021
  • In this paper, some sharp inequalities for ordinary derivative P'(z) and polar derivative DαP(z) = nP(z) + (α - z)P'(z) are obtained by including some of the coefficients and modulus of each individual zero of a polynomial P(z) of degree n not vanishing in the region |z| > k, k ≥ 1. Our results also improve the bounds of Turán's and Aziz's inequalities.

Lr INEQUALITIES FOR POLYNOMIALS

  • Reingachan N;Mayanglambam Singhajit Singh;Nirmal Kumar Singha;Khangembam Babina Devi;Barchand Chanam
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.451-460
    • /
    • 2024
  • If a0 + Σnν=μ aνzν, 1 ≤ µ ≤ n, is a polynomial of degree n having no zeroin |z| < k, k ≥ 1 and p'(z) its derivative, then Qazi [19] proved $$\max_{{\left|z\right|=1}}\left|p\prime(z)\right|\leq{n}\frac{1+\frac{{\mu}}{n}\left|\frac{a_{\mu}}{a_0} \right|k^{{\mu}+1}}{1+k^{{\mu}+1}+\frac{{\mu}}{n}\left|\frac{a_{\mu}}{a_0} \right|(k^{{\mu}+1}+k^{2{\mu}})}\max_{{\left|z\right|=1}}\left|p(z)\right|$$ In this paper, we not only obtain the Lr version of the polar derivative of the above inequality for r > 0, but also obtain an improved Lr extension in polar derivative.

INEQUALITIES FOR COMPLEX POLYNOMIAL WITH RESTRICTED ZEROS

  • Istayan Das;Robinson Soraisam;Mayanglambam Singhajit Singh;Nirmal Kumar Singha;Barchand Chanam
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.943-956
    • /
    • 2023
  • Let p(z) be a polynomial of degree n and for any complex number 𝛽, let D𝛽p(z) = np(z) + (𝛽 - z)p'(z) denote the polar derivative of the polynomial with respect to 𝛽. In this paper, we consider the class of polynomial $$p(z)=(z-z_0)^s \left(a_0+\sum\limits_{{\nu}=0}^{n-s}a_{\nu}z^{\nu}\right)$$ of degree n having a zero of order s at z0, |z0| < 1 and the remaining n - s zeros are outside |z| < k, k ≥ 1 and establish upper bound estimates for the maximum of |D𝛽p(z)| as well as |p(Rz) - p(rz)|, R ≥ r ≥ 1 on the unit disk.

ON SENDOV'S CONJECTURE ABOUT CRITICAL POINTS OF A POLYNOMIAL

  • Nazir, Ishfaq;Mir, Mohammad Ibrahim;Wani, Irfan Ahmad
    • Korean Journal of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.825-831
    • /
    • 2021
  • The derivative of a polynomial p(z) of degree n, with respect to point α is defined by Dαp(z) = np(z) + (α - z)p'(z). Let p(z) be a polynomial having all its zeros in the unit disk |z| ≤ 1. The Sendov conjecture asserts that if all the zeros of a polynomial p(z) lie in the closed unit disk, then there must be a zero of p'(z) within unit distance of each zero. In this paper, we obtain certain results concerning the location of the zeros of Dαp(z) with respect to a specific zero of p(z) and a stronger result than Sendov conjecture is obtained. Further, a result is obtained for zeros of higher derivatives of polynomials having multiple roots.

INEQUALITIES FOR B-OPERATOR

  • Akhter, Rubia;Gulzar, M.H.
    • Korean Journal of Mathematics
    • /
    • v.30 no.3
    • /
    • pp.525-532
    • /
    • 2022
  • Let 𝓟n denote the space of all complex polynomials $P(z)=\sum\limits_{j=0}^{n}{\alpha}_jz^j$ of degree n. Let P ∈ 𝓟n, for any complex number α, DαP(z) = nP(z) + (α - z)P'(z), denote the polar derivative of the polynomial P(z) with respect to α and Bn denote a family of operators that maps 𝓟n into itself. In this paper, we combine the operators B and Dα and establish certain operator preserving inequalities concerning polynomials, from which a variety of interesting results can be obtained as special cases.