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Abstract. Let p(z) be a polynomial of degree n and for any complex number β, let Dβp(z) =
np(z) + (β− z)p′(z) denote the polar derivative of the polynomial with respect to β. In this
paper, we consider the class of polynomial

p(z) = (z − z0)s
(
a0 +

n−s∑
ν=0

aνz
ν

)
of degree n having a zero of order s at z0, |z0| < 1 and the remaining n− s zeros are outside

|z| < k, k ≥ 1 and establish upper bound estimates for the maximum of |Dβp(z)| as well as

|p(Rz)− p(rz)|, R ≥ r ≥ 1 on the unit disk.
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1. Introduction

The extremal problems of functions of complex variables and the results
where some approaches to obtaining the classical inequalities are developed on
using various methods of the geometric function theory are known for various
constraints, and on various regions of the complex plane. A classical result
due to Bernstein [5], that relates an estimate of the size of the derivative and
the polynomial for the sup-norm on the unit circle states that: if p(z) is a
polynomial of degree n, then

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|. (1.1)

Inequality (1.1) was proved by Bernstein in 1912. And a simple deduction
from the maximum modulus principle for R ≥ 1 gives

max
|z|=1

|p(Rz)| ≤ Rn max
|z|=1

|p(z)| . (1.2)

Both inequalities (1.1) and (1.2) are sharp and the equality holds if and only
if p(z) has all its zeros at the origin.

Later in 1985, Frappier et al. [10] strengthened (1.1), by proving that if
p(z) is a polynomial of degree n, then

max
|z|=1

|p′(z)| ≤ n max
1≤l≤2n

|p(eilπ/n)|. (1.3)

Clearly (1.3) represents a refinement of (1.1), since the maximum of |p(z)| on
|z| = 1 may be larger than the maximum of |p(z)| taken over the (2n)th roots
of unity, as is shown by the simple example p(z) = zn + ia, a > 0. Following
the approach of Frappier et al. [10] and Aziz [1] showed that the bounds in
(1.3) and (1.2) can be considerably improved. In fact, Aziz proved that if p(z)
is a polynomial of degree n, then

max
|z|=1

|p′(z)| ≤ n

2
(Mα +Mα+π) (1.4)

and for R > 1

max
|z|=1

|p(Rz)− p(z)| ≤ Rn − 1

2
(Mα +Mα+π), (1.5)

where throughout the paper

Mα = max
1≤l≤2n

|p(ei(α+2lπ)/n)| (1.6)

for all real α.
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If we restrict ourselves to the class of polynomials having no zero in |z| < 1,
then (1.1) can be replaced by

max
|z|=1

|p′(z)| ≤ n

2
max
|z|=1

|p(z)|. (1.7)

Inequality (1.7) was conjectured by Erdös and later proved by Lax [13]. Im-
provements and generalizations of inequality (1.7) were given by Aziz and
Dawood [2], Malik [14], Govil [11], Dewan and Bidkham [9], Chan and Malik
[6], Pukhta [25], Aziz and Zargar [4], Aziz and Shah [3], Qazi [26], Chanam
and Dewan [7], Chanam et al. [8] etc.

Ideally, it is natural to look for improvements of (1.4) and (1.5) when p(z)
does not vanish in the unit disc, and accordingly Aziz [1] proved that if p(z) is
a polynomial of degree n having no zero in |z| < 1, then for every real number
α,

max
|z|=1

|p′(z)| ≤ n

2

(
M2
α +M2

α+π

) 1
2 (1.8)

and also improvement of inequality (1.5) for every real number α and R > 1

max
|z|=1

|p(Rz)− p(z)| ≤ Rn − 1

2

(
M2
α +M2

α+π

) 1
2 . (1.9)

Recently, Nakprasit and Somsuwan [24] investigated max
|z|=1

|p′(z)| in terms of

max
|z|=1

|p(z)| for a polynomial p(z) of degree n having a zero of order s at z0,

where |z0| < 1 and proved:

Theorem 1.1. ([24]) If p(z) = (z − z0)s
n−s∑
ν=0

aνz
ν is a polynomial of degree n

having no zero in |z| < k, k ≥ 1 except a zero of order s, 0 ≤ s < n at z0,
where |z0| < 1, then

max
|z|=1

|p′(z)| ≤
{

s

1− |z0|
+

A

(1− |z0|)s

}
max
|z|=1

|p(z)| − A

(k + |z0|)s
min
|z|=k

|p(z)|,

(1.10)
where

A =
(1 + |z0|)s+1(n− s)
(1 + kµ)(1− |z0|)

.

It is important to mention that different versions of the Bernstein type in-
equalities have appeared in the literature in more generalized forms in which
the underlying polynomial is replaced by more general classes of functions.
These inequalities have their own significance and importance in approxima-
tion theory. One of such generalizations is moving from the domain of ordinary
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derivative of polynomials to their polar derivative. Here, we remind that the
polar derivative Dβp(z) of p(z) where p(z) is a polynomial of degree n, with
respect to the point β is defined as

Dβp(z) = np(z) + (β − z)p′(z).
Note that Dβp(z) is a polynomial of degree at most n − 1. This is the so-
called polar derivative of p(z) with respect to β. It generalizes the ordinary
derivative in the sense that

lim
β→∞

{
Dβp(z)

β

}
= p′(z),

uniformly with respect to z for |z| ≤ R, R > 0.

One very important point worth to note is that derivative is a very general
term applied to any function whereas the polar derivative mentioned above is
defined for or referred to a polynomial only. Because in the definition of polar
derivative of a polynomial, the degree of the polynomial plays a central role.

More information on the polar derivative of a polynomial can be found
in the comprehensive books of Milovanović et. al. [16] and Rahmann and
Schmeisser [27].

Over the last four decades many different authors produced a large num-
ber of different versions and generalizations of the above inequalities by in-
troducing restrictions on the multiplicity of zero at z = 0, the modulus of
the largest root of p(z), restrictions on the coefficients, using higher order
derivatives, etc. Many of these generalizations involve the comparison of
polar derivative Dβp(z) with various choices of p(z), β and other parame-
ters. The latest research and development on this topic can be found in the
papers([12, 15, 17, 18, 19, 21, 22, 23, 28]).

2. Lemmas

We shall need the following lemmas in order to prove the theorems. For a

polynomial p(z) of degree n, we will use q(z) = znp
(

1
z̄

)
.

Lemma 2.1. ([20]) If {yν}, ν = 1, 2, . . . , n is a sequence of real numbers such
that yν ≥ 1 for all ν ∈ N, then

n∑
ν=1

yν − 1

yν + 1
≥
∏n
ν=1 yν − 1∏n
ν=1 yν + 1

for all n ∈ N. (2.1)

Lemma 2.2. If p(z) = (z − z0)s
n−s∑
ν=0

aνz
ν , is a polynomial of degree n having

no zero in |z| < k, k ≥ 1, except a zero of multiplicity s at z0, |z0| < 1, then
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for each point z on |z| = 1 for which p(z) 6= 0, we have

Re

(
zp′(z)

p(z)

)
≤ s

1− |z0|
+
n− s
1 + k

− 1

1 + k

(
|a0|ks − |an−s|kn

|a0|ks + |an−s|kn

)
. (2.2)

Proof. Let p(z) = (z − z0)s φ(z), where φ(z) =

n−s∑
ν=0

aνz
ν is a polynomial of

degree n− s having no zero in |z| < k, k ≥ 1. Therefore, if z1, z2, . . . , zn−s be
the zeros of φ(z), then |zj | ≥ k, k ≥ 1, j = 1, 2, . . . , n− s. Hence, we have

zp′(z)

p(z)
=

sz

z − z0
+

n−s∑
j=1

z

z − zj
. (2.3)

This, in particular, gives

Re

(
zp′(z)

p(z)

)
= Re

(
sz

z − z0

)
+

n−s∑
j=1

Re

(
z

z − zj

)
.

For the points eiθ, 0 ≤ θ < 2π which are not the zeros of p(z), we have

Re

(
eiθp′(eiθ)

p(eiθ)

)
= Re

(
seiθ

eiθ − z0

)
+

n−s∑
j=1

Re

(
eiθ

eiθ − zj

)
.

Now,
n−s∑
j=1

Re

(
eiθ

eiθ − zj

)
≤

n−s∑
j=1

1

1 + |zj |

=
n− s
1 + k

− 1

1 + k

n−s∑
j=1

|zj | − k
|zj |+ 1

≤ n− s
1 + k

− 1

1 + k

n−s∑
j=1

|zj | − k
|zj |+ k

(as k ≥ 1)

=
n− s
1 + k

− 1

1 + k

n−s∑
j=1

|zj |
k − 1
|zj |
k + 1

.

Since
|zj |
k ≥ 1, j = 1, 2, . . . , n, we get on using Lemma 2.1 for the points eiθ,

0 ≤ θ < 2π which are not the zeros of p(z),

n−s∑
j=1

Re

(
eiθ

eiθ − zj

)
≤ n− s

1 + k
− 1

1 + k

(∏n−s
ν=1

|zj |
k − 1∏n−s

ν=1
|zj |
k + 1

)

=
n− s
1 + k

− 1

1 + k

(
|a0|ks − |an−s|kn

|a0|ks + |an−s|kn

)
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and

Re

(
seiθ

eiθ − z0

)
≤ s

1− |z0|
.

Therefore,

Re

(
eiθp′(eiθ)

p(eiθ)

)
≤ s

1− |z0|
+
n− s
1 + k

− 1

1 + k

(
|a0|ks − |an−s|kn

|a0|ks + |an−s|kn

)
.

�

Lemma 2.3. ([1]) If p(z) =
n∑
ν=0

aνz
ν is a polynomial of degree n, then for

|z| = 1 and for every real α∣∣p′(z)∣∣2 +
∣∣q′(z)∣∣2 ≤ n2

2

(
M2
α +M2

α+π

)
. (2.4)

3. Main results

The main purpose of this paper is to obtain upper bound estimates for
max
|z|=1

|Dβp(z)| as well as max
|z|=1

|p(Rz) − p(rz)|, R ≥ r ≥ 1, for the same class

of polynomial considered in Theorem 1.1 by involving the coefficients of the
polynomial and following the approach of Frappier et al. [10]. The obtained
results sharpen as well as generalize some already known estimates as special
case. We first prove the following result

Theorem 3.1. If p(z) = (z − z0)s
n−s∑
ν=0

aνz
ν is a polynomial of degree n having

no zero in |z| < k, k ≥ 1, except a zero of order s, 0 ≤ s < n at z0, where
|z0| < 1, then for every complex number β with |β| ≥ 1,

max
|z|=1

|Dβp(z)| ≤
n

2

[
2 max
|z|=1

|p(z)|+(|β|−1)

{
M2
α+M2

α+π−2

{
1− 2

n

{
s

1− |z0|

+
n− s
1 + k

− 1

1 + k

(
|a0|ks − |an|kn

|a0|ks + |an|kn

)}}
|p(z)|2

} 1
2
]
. (3.1)

Proof. Since p(z) has no zero in |z| < k, k ≥ 1, except a zero of multiplicity
s at z0, |z0| < 1, 0 ≤ s < n. If z1, z2, . . . , zn−s be the zeros of p(z) such that
|zj | ≥ k, k ≥ 1, j = 1, 2, . . . , n− s. Hence, we have by Lemma 2.2 for |z| = 1

Re

(
zp′(z)

p(z)

)
≤ s

1− |z0|
+
n− s
1 + k

− 1

1 + k

(
|a0|ks − |an−s|kn

|a0|ks + |an−s|kn

)
. (3.2)
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Also, we have for |z| = 1, ∣∣q′(z)∣∣ =
∣∣np(z)− zp′(z)∣∣ .

This gives for |z| = 1∣∣∣∣zq′(z)p(z)

∣∣∣∣2 =

∣∣∣∣n− z p′(z)p(z)

∣∣∣∣2
= n2 +

∣∣∣∣z p′(z)p(z)

∣∣∣∣2 − 2nRe

(
zp′(z)

p(z)

)
,

which on using Lemma 2.2 gives∣∣∣∣zq′(z)p(z)

∣∣∣∣2 ≥ n2 +

∣∣∣∣z p′(z)p(z)

∣∣∣∣2 − 2n

{
s

1− |z0|
+
n− s
1 + k

− 1

1 + k

(
|a0|ks − |an−s|kn

|a0|ks + |an−s|kn

)}
.

Equivalently

∣∣q′(z)∣∣2 ≥ n2 |p(z)|2 +
∣∣zp′(z)∣∣2 − 2n|p(z)|2

{
s

1− |z0|

+
n− s
1 + k

− 1

1 + k

(
|a0|ks − |an−s|kn

|a0|ks + |an−s|kn

)}
.

Therefore

2
∣∣p′(z)∣∣2 ≤ ∣∣p′( z)|2 +

∣∣q′(z)∣∣2−{n2 − 2n

{
s

1− |z0|
+
n− s
1 + k

− 1

1 + k

(
|a0|ks − |an−s|kn

|a0|ks + |an−s|kn

)}}
|p(z)|2. (3.3)

Applying Lemma 2.3 to (3.3), we get

2
∣∣p′(z)∣∣2 ≤ n2

2

(
M2
α +M2

α+π

)
−

{
n2 − 2n

{
s

1− |z0|

+
n− s
1 + k

− 1

1 + k

(
|a0|ks − |an−s|kn

|a0|ks + |an−s|kn

)}}
|p(z)|2,
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which implies∣∣p′(z)∣∣ ≤ n

2

[
M2
α +M2

α+π − 2

{
1− 2

n

{
s

1− |z0|

+
n− s
1 + k

− 1

1 + k

(
|a0|ks − |an−s|kn

|a0|ks + |an−s|kn

)}}
|p(z)|2

] 1
2

. (3.4)

Using the definition of polar derivative of a polynomial with respect to the
complex number β with |β| ≥ 1, we have

|Dβp(z)| =
∣∣np(z) + (β − z)p′(z)

∣∣
≤

∣∣np(z) + zp′(z)
∣∣+ |β|

∣∣p′(z)∣∣
=

∣∣q′(z)∣∣+ |β|
∣∣p′(z)∣∣

≤ nmax
|z|=1

|p(z)|+ (|β| − 1)
∣∣p′(z)∣∣ . (3.5)

Inequality (3.5) in conjunction with inequality (3.4) gives,

max
|z|=1

|Dβp(z)| ≤
n

2

[
2 max
|z|=1

|p(z)|+ (|β|−1)

{
M2
α+M2

α+π−2

{
1− 2

n

{
s

1− |z0|

+
n− s
1 + k

− 1

1 + k

(
|a0|ks − |an−s|kn

|a0|ks + |an−s|kn

)}}
|p(z)|2

} 1
2
]
.

This completes the proof of Theorem 3.1. �

Taking z0 = 0 in Theorem 3.1, we get the following result for the polynomial
having s−fold zeros at the origin.

Corollary 3.2. If p(z) = zs
n−s∑
ν=0

aνz
ν is a polynomial of degree n having no

zero in |z| < k, k ≥ 1, except a zero of order s, 0 ≤ s < n at origin, then for
every complex number β with |β| ≥ 1,

max
|z|=1

|Dβp(z)| ≤
n

2

[
2 max
|z|=1

|p(z)|+ (|β|−1)

{
M2
α+M2

α+π−2

{
1− 2

n

{
n+ sk

1 + k

− 1

1 + k

(
|a0|ks − |an|kn

|a0|ks + |an|kn

)}}
|p(z)|2

} 1
2
]
. (3.6)

Setting s = 0 to Theorem 3.1, we get the following result due to Mir and
Hussian [20].
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Corollary 3.3. If p(z) =

n∑
ν=0

aνz
ν is a polynomial of degree n having no zero

in |z| < k, k ≥ 1, then for every complex number β with |β| ≥ 1,

max
|z|=1

|Dβp(z)| ≤
n

2

[
2 max
|z|=1

|p(z)|+ (|β| − 1)

{
M2
α +M2

α+π

− 2

1 + k

{
(k − 1) +

2

n

(
|a0| − |an|kn

|a0|+ |an|kn

)}}
|p(z)|2

} 1
2
]
.

Clearly, Theorem 3.1 and Corollary 3.2 are extensions of Corollary 3.3.

Dividing both side of inequality (3.1) by |β| and taking limit |β| → ∞, we
have the following corollary.

Corollary 3.4. If p(z) = (z − z0)s
n−s∑
ν=0

aνz
ν is a polynomial of degree n having

no zero in |z| < k, k ≥ 1, except a zero of order s, 0 ≤ s < n at z0, where
|z0| < 1, then

max
|z|=1

∣∣p′(z)∣∣ ≤ n

2

{
M2
α +M2

α+π − 2

{
1− 2

n

{
s

1− |z0|

+
n− s
1 + k

− 1

1 + k

(
|a0|ks − |an|kn

|a0|ks + |an|kn

)}}
|p(z)|2

} 1
2

. (3.7)

Taking z0 = 0 in Corollary 3.4, we get the following result.

Corollary 3.5. If p(z) = zs
n−s∑
ν=0

aνz
ν is a polynomial of degree n having no

zero in |z| < k, k ≥ 1, except a zero of order s, 0 ≤ s < n at origin, then

max
|z|=1

∣∣p′(z)∣∣ ≤ n

2

{
M2
α +M2

α+π − 2

{
1− 2

n

{
n+ sk

1 + k

− 1

1 + k

(
|a0|ks − |an|kn

|a0|ks + |an|kn

)}}
|p(z)|2

} 1
2

. (3.8)

Setting s = 0 to Corollary 3.4, we get the following extension as well as
generalization of inequality (1.8).
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Corollary 3.6. If p(z) =

n∑
ν=0

aνz
ν is a polynomial of degree n having no zero

in |z| < k, k ≥ 1, then

max
|z|=1

∣∣p′(z)∣∣ ≤ n

2

{
M2
α+M2

α+π−
2

1 + k

[
(k−1)+

2

n

(
|a0|ks−|an|kn

|a0|ks+|an|kn

)]
|p(z)|2

} 1
2

.

(3.9)

Clearly, Corollaries 3.4 and 3.5 are extensions of Corollary 3.6. Further, as
an application of Corollary 3.4, we obtain the following extension of inequality
(1.9) to the class of polynomial of degree n having no zero in |z| < k, k ≥ 1,
except a zero of order s, 0 ≤ s < n at z0, where |z0| < 1.

Theorem 3.7. If p(z) = (z − z0)s
n−s∑
ν=0

aνz
ν is a polynomial of degree n having

no zero in |z| < k, k ≥ 1, except a zero of order s, 0 ≤ s < n at z0, where
|z0| < 1, then for every real α and R ≥ r ≥ 1,

max
|z|=1

|p (Rz)− p (rz)| ≤ Rn − rn

2

[
M2
α +M2

α+π

− 2

{
1− 2

n

{
s

1− |z0|
+
n− s
1 + k

− 1

1 + k

(
|a0|ks − |an|kn

|a0|ks + |an|kn

)}}
|p(z)|2

] 1
2

. (3.10)

Proof. Applying inequality (1.2) to the polynomial p′(z), which is of degree
n− 1, we obtain for t ≥ 1 and 0 ≤ 0 < 2π∣∣∣p′ (teiθ)∣∣∣ ≤ tn−1 max

|z|=1

∣∣p′(z)∣∣ .
Using Corollary 3.4, we have

∣∣∣p′ (teiθ)∣∣∣ ≤ ntn−1

2

[ (
M2
α +M2

α+π

)
− 2

{
1− 2

n

{
s

1− |z0|
+
n− s
1 + k

− 1

1 + k

(
|a0|ks − |an−s|kn

|a0|ks + |an−s|kn

)}}
|p(z)|2

] 1
2

. (3.11)
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Hence for each θ, 0 ≤ θ < 2π and R ≥ r ≥ 1, we have

∣∣∣p(Reiθ)− p(reiθ)∣∣∣ =

∣∣∣∣∫ R

r
eiθp′

(
teiθ
)
dt

∣∣∣∣
≤
∫ R

r

∣∣∣p′ (teiθ)∣∣∣ dt (3.12)

and from inequality (3.11), we have

∣∣∣p(Reiθ)− p(reiθ)∣∣∣ ≤ 1

2

[ (
M2
α +M2

α+π

)
− 2

{
1− 2

n

{
s

1− |z0|
+
n− s
1 + k

− 1

1 + k

(
|a0|ks − |an−s|kn

|a0|ks + |an−s|kn

)}}
|p(z)|2

] 1
2∫ R

r
ntn−1dt,

that is,

∣∣∣p(Reiθ)− p(reiθ)∣∣∣ ≤ Rn − rn

2

[ (
M2
α +M2

α+π

)
− 2

{
1− 2

n

{
s

1− |z0|

+
n− s
1 + k

− 1

1 + k

(
|a0|ks − |an−s|kn

|a0|ks + |an−s|kn

)}}
|p(z)|2

] 1
2

.

This implies that, for |z| = 1 and R ≥ r ≥ 1,

|p (Rz)− p (rz)| ≤ Rn − rn

2

[
M2
α +M2

α+π − 2

{
1− 2

n

{
s

1− |z0|

+
n− s
1 + k

− 1

1 + k

(
|a0|ks − |an|kn

|a0|ks + |an|kn

)}}
|p(z)|2

] 1
2

.

This completes the proof of Theorem 3.7. �

Putting z0 = 0 to Theorem 3.7, we have the following result.

Corollary 3.8. If p(z) = zs
n−s∑
ν=0

aνz
ν is a polynomial of degree n having no

zero in |z| < k, k ≥ 1, except a zero of order s, 0 ≤ s < n at origin, then for
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every real α and R ≥ r ≥ 1,

max
|z|=1

|p (Rz)− p (rz)| ≤ Rn − rn

2

{
M2
α +M2

α+π − 2

{
1− 2

n

{
n+ sk

1 + k

− 1

1 + k

(
|a0|ks − |an|kn

|a0|ks + |an|kn

)}}
|p(z)|2

} 1
2

. (3.13)

Setting s = 0 to Theorem 3.7, we get the following result.

Corollary 3.9. If p(z) =
n∑
ν=0

aνz
ν is a polynomial of degree n having no zero

in |z| < k, k ≥ 1, then for every real α and R ≥ r ≥ 1,

max
|z|=1

|p (Rz)− p (rz)| ≤ Rn − rn

2

{
M2
α +M2

α+π −
2

1 + k

[
(k − 1)

+
2

n

(
|a0|ks − |an|kn

|a0|ks + |an|kn

)]
|p(z)|2

} 1
2

. (3.14)

It is easy to verify that Corollay 3.9 generalizes as well as sharpens inequality
(1.9). Taking k = 1, r = 1 in Corollary 3.9, we get the following result.

Corollary 3.10. If p(z) =
n∑
ν=0

aνz
ν is a polynomial of degree n having no zero

in |z| < 1, then for every real α and R ≥ 1,

max
|z|=1

|p (Rz)− p (z)| ≤ Rn − 1

2

{
M2
α +M2

α+π

− 2

n

(
|a0| − |an|
|a0|+ |an|

)
|p(z)|2

} 1
2

. (3.15)

Remark 3.11. The bound obtained in Corollary 3.10 is always sharpen than
the bound obtained from inequality (1.9), for this it needs to show that

|a0| − |an|
|a0|+ |an|

≥ 0,

which is equivalent to

|a0| ≥ |an|,
which is true as p(z) 6= 0 in |z| < 1.



Inequalities for complex polynomial with restricted zeros 955

Acknowledgments: We are thankful to NIT, Manipur for providing us finan-
cial support. We are also grateful to the referee for his/her useful suggestions.

References

[1] A. Aziz, A refinement of an inequality of S. Bernstein, J. Math. Anal. Appl., 114 (1989),
226-235, https://doi.org/10.1016/0022-247X(89)90370-3.

[2] A. Aziz and Q.M. Dawood, Inequalities for a polynomial and its derivative, J. Approx.
Theory, 54 (1988), 306-313.

[3] A. Aziz and W.M. Shah, Inequalities for a polynomial and its derivative, Math. Ineq.
Appl., 7(3) (2004), 379-391.

[4] A. Aziz and B.A. Zargar, Inequalities for a polynomial and its derivative, Math. Ineq.
Appl., 1(4) (1998), 543-550.

[5] S. Bernstein, Sur lordre de la meilleure approximation des functions continues par des
polynomes de degr donn, Mem. Acad. R. Belg., 4 (1912), 1-103.

[6] T.N. Chan and M.A. Malik, On Erdös-Lax theorem, Proc. Indian Acad. Sci., 92(3)
(1983), 191-193.

[7] B. Chanam and K.K. Dewan, Inequalities for a polynomial and its derivative, J. Math.
Anal. Appl., 336 (2007), 171-179.

[8] B. Chanam, N. Reingachan, K. B. Devi, M. T. Devi and K. Krishnadas, Some Lq

inequalities for polynomial, Nonlinear Funct. Anal. Appl., 26(2)(2021), 331-345.
[9] K.K. Dewan and M. Bidkham, Inequalities for a polynomial and its derivative, J. Math.

Anal. Appl., 166 (1992), 319-324.
[10] C. Frappier, Q.I. Rahman and S. Ruscheweyh, New inequalities for polynomials,

Trans. Amer. Math. Soc., 288 (1985), 6999, https://doi.org/10.1090/S0002-9947-1985-
0773048-1.

[11] N.K. Govil, Some inequalities for derivatives of polynomials, J. Approx. Theory, 66
(1991), 29-35.

[12] A. Hussain, A. Mir and A. Ahmad, On Bernstein-type inequalities for poly-
nomials involving the polar derivative, J. Class. Anal., 16 (2020), 9-15,
https://doi.org/10.7153/jca-2020-16-02.

[13] P.D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull.
Amer. Math. Soc., 50 (1944), 509–513.

[14] M.A. Malik, On the derivative of a polynomial, J. London Math. Soc., 1 (1969), 57-60.
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