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Abstract. Let P (z) be a polynomial of degree n. A well-known inequality due to S.
Bernstein states that if P ∈ Pn, then

max
|z|=1

|P
′
(z)| ≤ nmax

|z|=1
|P (z)|.

In this paper, we establish some extensions and refinements of the above inequality to

polar derivative and some other well-known inequalities concerning the polynomials and their

ordinary derivatives.

1. Introduction

Let Pn(z) be the set of complex polynomials P (z) =

n∑
j=0

ajz
j of degree n.

According to a well-known classical result due to Bernstein [4], if P ∈ Pn, then

max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)|. (1.1)
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Inequality (1.1) is sharp and equality holds if p(z) has all its zeros at the
origin. It was proved by Frappier et al. [5] that, if P ∈ Pn, then

max
|z|=1

|P ′(z)| ≤ n max
1≤k≤n

|P (eikπn)|. (1.2)

It is evident that inequality (1.2) is a refinement of (1.1), since the maximum
of |P (z)| on |z| = 1 may be larger than the maximum of |P (z)| taken over
(2n)th roots of unity, as is shown by the simple example P (z) = zn+ ia, a > 0.
Aziz [2] improved the bound of inequality (1.2) by proving that, if P ∈ Pn,
then for every real α,

max
|z|=1

|P ′(z)| ≤ n

2
(Mα +Mα+π), (1.3)

where

Mα = max
1≤k≤n

|P (ei(α+2kπ)n)| (1.4)

and Mα+π is obtained by replacing α by α+ π.

If we restrict ourselves to the class of polynomials P ∈ Pn having no zero
in |z| < 1, then Erdös conjectured and later Lax [8] proved that

max
|z|=1

|P ′(z)| ≤ n

2
max
|z|=1

|P (z)|. (1.5)

Inequality (1.5) was improved by Aziz [2] by proving that if P ∈ Pn and P (z)
has no zero in |z| < 1, then for every real α,

max
|z|=1

|P ′(z)| ≤ n

2
(M2

α +M2
α+π)

1
2 , (1.6)

where Mα is as defined in (1.4).

In this direction, Rather et al. [12] consider the class Pn,µ(z) of all complex

polynomials P (z) = a0 +
n∑
j=µ

ajz
j , 1 ≤ µ ≤ n of degree n and obtained a

generalization of inequality (1.6) by proving that, if P ∈ Pn,µ, has no zero in
|z| < k, k ≥ 1, then for every real α,

max
|z|=1

|P ′(z)| ≤ n√
2(1 + k2µ)

(M2
α +M2

α+π)
1
2 , (1.7)

where Mα is as defined in (1.4). They [12] further improved the bound of (1.7)
by involving m = min

|z|=k
|P (z)| and obtained

max
|z|=1

|P ′(z)| ≤ n√
2(1 + k2µ)

(M2
α +M2

α+π − 2m2)
1
2 , (1.8)
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where Mα is as defined in (1.4). Further, by involving some coefficients of
the polynomials in Pn,µ(z), Rather et al. [12] improved the bound (1.7) and
proved that, if P ∈ Pn,µ, has no zero in |z| < k, k ≥ 1, then for every real α,

max
|z|=1

|P ′(z)| ≤ n√√√√2

{
1 + k2(µ+1)

(
µ
n
|aµ
a0
|kµ−1+1

1+µ
n
|aµ
a0
|kµ+1

)2
}(M2

α +M2
α+π)

1
2 , (1.9)

where Mα is as defined in (1.4). Rather et al. [12] improved inequality (1.8)
under the same hypothesis and obtained,

max
|z|=1

|P ′(z)| ≤ n√√√√√2

1 + k2(µ+1)

(
µ
n

|aµ|
|a0|−m

kµ−1+1

1+µ
n

|aµ|
|a0|−m

kµ+1

)2


(M2
α +M2

α+π − 2m2)
1
2 ,

(1.10)
where m = min

|z|=k
|P (z)| and Mα is as defined in (1.4).

For a polynomial P (z) of degree n, we now define the polar derivative of
P (z) with respect to a real or complex number β as

Dβp(z) = np(z) + (β − z)p′(z).
This polynomial DβP (z) is of degree at most n − 1 and it generalizes the

ordinary derivative P
′
(z) in the sense that

lim
β→∞

DβP (z)

β
= P

′
(z),

uniformly with respect to z for |z| ≤ R, R > 0.

Aziz [1] was among the first who extended some of the above inequalities
to polar versions by replacing the derivative of the polynomial with the polar
derivative of the polynomial. He, in fact, extended inequality (1.5) to polar
derivative by proving that if P (z) is a polynomial of degree n having no zero
in |z| < 1, then for every real or complex number β with |β| ≥ 1,

max
|z|=1

|DβP (z)| ≤ n

2
(|β|+ 1) max

|z|=1
|P (z)|. (1.11)

Dividing both sides of (1.11) by |β| and letting |β| → ∞, we get inequality
(1.5).

Over the last four decades many different authors produced a large number
of results concerning the polar derivative of polynomials. More information on
classical results and polar derivatives can be found in the books of Milovanović
et al. [10] and Marden [9].
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2. Lemmas

We need the following important lemmas to prove our theorems. Next
lemma is a special case of a result due to Govil and Rahman [7].

Lemma 2.1. If P (z) is a polynomial of degree n, then on |z| = 1,

|P ′(z)|+ |Q′(z)| ≤ nmax
|z|=1

|P (z)|, (2.1)

where Q(z) = znP (1z ).

The following lemma is due to Aziz [2].

Lemma 2.2. If P (z) is a polynomial of degree n, then for |z| = 1 and for
every real α,

|P ′(z)|2 + |nP (z)− zP ′(z)|2 ≤ n2

2
(M2

α +M2
α+π), (2.2)

where Mα is as defined in (1.4).

The following two lemmas are due to Aziz and Rather [3].

Lemma 2.3. If P (z) = a0 +

n∑
j=µ

ajz
j is a polynomial of degree at most n and

P (z) 6= 0 for |z| < k, k ≥ 1, then for |z| = 1,

kµ|P ′(z)| ≤ |nP (z)− zP ′(z)|. (2.3)

Lemma 2.4. If P (z) = a0 +
n∑
j=µ

ajz
j is a polynomial of degree at most n and

P (z) 6= 0 for |z| < k, k ≥ 1, then for |z| = 1,

kµ|P ′(z)| ≤ |nP (z)− zP ′(z)| − nm, (2.4)

where m = min
|z|=k

|P (z)|.

The next lemma was proved by Qazi [11].

Lemma 2.5. If P (z) = a0 +

n∑
j=µ

ajz
j is a polynomial of degree at most n and

P (z) 6= 0 for |z| < k, k ≥ 1, then for |z| = 1,

kµ+1
µ
n |
aµ
a0
|kµ−1 + 1

1 + µ
n |
aµ
a0
|kµ+1

|P ′(z)| ≤ |nP (z)− zP ′(z)|. (2.5)
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The following lemma is due to Gardner et al. [6].

Lemma 2.6. If P (z) = a0 +
n∑
j=µ

ajz
j is a polynomial of degree at most n and

P (z) 6= 0 for |z| < k, k ≥ 1, and m = min
|z|=k

|P (z)|, then for |z| = 1,

kµ+1

µ
n
|aµ|
|a0|−mk

µ−1 + 1

1 + µ
n
|aµ|
|a0|−mk

µ+1
|P ′(z)| ≤ |nP (z)− zP ′(z)| − nm. (2.6)

3. Main results

In this paper, we extend inequalities (1.7), (1.8), (1.9) and (1.10) to polar
derivative. In this direction, we first prove the following extensions of inequal-
ities (1.7) and (1.8) to polar derivative.

Theorem 3.1. If P ∈ Pn,µ, has no zero in |z| < k, k ≥ 1 and m = min
|z|=k

|P (z)|,

then for every real or complex number β with |β| ≥ 1 and for every real α,

|DβP (z)| ≤ nmax
|z|=1

|P (z)|+ (|β|−1)
n√

2(1 + k2µ)
(M2

α+M2
α+π−2m2)

1
2 , (3.1)

where Mα is as defined in (1.4).

Proof. If P (z) is a polynomial of degree n, then for |z| = 1,

|Q′(z)| = |nP (z)− zP ′(z)|, (3.2)

where Q(z) = znP (1z ).
Now, for every real or complex number β, the polar derivative of P (z) with

respect to β is

DβP (z) = nP (z) + (β − z)P ′(z),
which further implies for |z| = 1, from Lemma 2.1, we have

|DβP (z)| = |nP (z)− zP ′(z)|+ |β||P ′(z)|
= |Q′(z)|+ |β||P ′(z)|
≤ nmax

|z|=1
|P (z)|+ (|β| − 1)|P ′(z)|. (3.3)

By hypothesis, P (z) does not vanish in |z| < k, k ≥ 1 and m = min
|z|=k

|P (z)|,

therefore by Lemma 2.4, we have for |z| = 1

(kµ|P ′(z)|+ nm)2 ≤ |nP (z)− zP ′(z)|2.
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This gives with the help of Lemma 2.2 for |z| = 1,

|P ′(z)|2 + (kµ|P ′(z)|+ nm)2 ≤ |P ′(z)|2 + |nP (z)− zP ′(z)|2

≤ n2

2
(M2

α +M2
α+π).

Since

(kµ|P ′(z)|+ nm)2 = k2µ|P ′(z)|2 + n2m2 + 2nmkµ|P ′(z)|
≥ k2µ|P ′(z)|2 + n2m2,

it follows that

(1 + k2µ)|P ′(z)|2 + n2m2 ≤ n2

2
(M2

α +M2
α+π),

which implies, for |z| = 1

|P ′(z)| ≤ n√
2(1 + k2µ)

(M2
α +M2

α+π − 2m2)
1
2 . (3.4)

Combining (3.3) and (3.4), we have for |z| = 1,

|DβP (z)| ≤ nmax
|z|=1

|P (z)|+ (|β| − 1)
n√

2(1 + k2µ)
(M2

α +M2
α+π − 2m2)

1
2 .

This completes the proof. �

Remark 3.2. Dividing both sides of inequality (3.1) by |β| and letting |β| →
∞, we obtain inequality (1.8).

Corollary 3.3. If P ∈ Pn,µ, has no zero in |z| < k, k ≥ 1, then for every real
or complex number β with |β| ≥ 1 and for every real α,

|DβP (z)| ≤ nmax
|z|=1

|P (z)|+ (|β| − 1)
n√

2(1 + k2µ)
(M2

α +M2
α+π)

1
2 , (3.5)

where Mα is as defined in (1.4).

Proof. The proof of Corollary 3.3 follows on the same lines as that of Theorem
3.1 except that instead of applying Lemma 2.4, we use Lemma 2.3. We omit
the details. �

Remark 3.4. Dividing both sides of inequality (3.5) by |β| and letting |β| →
∞, we get inequality (1.7).

Remark 3.5. For µ = 1, Theorem 3.1 gives a refinement in polar derivative
of the inequality (1.6).
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We next prove the following result, which not only gives extensions of in-
equalities (1.9) and (1.10) to polar derivative versions but also provides an
improvement of Theorem 3.1 under the same hypotheses.

Theorem 3.6. If P ∈ Pn,µ, has no zero in |z| < k, k ≥ 1, then for every real
or complex number β with |β| ≥ 1 and for every real α,

|DβP (z)| ≤ nmax
|z|=1

|P (z)|+ (|β| − 1)
n√√√√2

{
1 + k2(µ+1)

(
µ
n
|aµ
a0
|kµ−1+1

1+µ
n
|aµ
a0
|kµ+1

)2
}

×(M2
α +M2

α+π)
1
2 , (3.6)

where Mα is as defined in (1.4).

Proof. Proceeding similarly as in the proof of Theorem 3.1, we get from in-
equality (3.3),

|DβP (z)| ≤ nmax
|z|=1

|P (z)|+ (|β| − 1)|P ′(z)|. (3.7)

By hypothesis, P (z) = a0 +

n∑
j=µ

ajz
j is a polynomial of degree at most n and

does not vanish in |z| < k, k ≥ 1, therefore by Lemma 2.5, we have for |z| = 1

kµ+1
µ
n |
aµ
a0
|kµ−1 + 1

1 + µ
n |
aµ
a0
|kµ+1

|P ′(z)| ≤ |nP (z)− zP ′(z)|,

which implies, for |z| = 1

k2(µ+1)

(
µ
n |
aµ
a0
|kµ−1 + 1

1 + µ
n |
aµ
a0
|kµ+1

)2

|P ′(z)|2 ≤ |nP (z)− zP ′(z)|2.

This gives with the help of Lemma 2.2 for |z| = 1,1+k2(µ+1)

(
µ
n |
aµ
a0
|kµ−1 + 1

1 + µ
n |
aµ
a0
|kµ+1

)2
 |P ′(z)|2 ≤ |P ′(z)|2+|nP (z)− zP ′(z)|2

≤ n2

2
(M2

α +M2
α+π)

or

|P ′(z)| ≤ n√√√√2

{
1 + k2(µ+1)

(
µ
n
|aµ
a0
|kµ−1+1

1+µ
n
|aµ
a0
|kµ+1

)2
}(M2

α +M2
α+π − 2m2)

1
2 . (3.8)
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Combining (3.7) and (3.8), we have for |z| = 1,

|DβP (z)| ≤ nmax
|z|=1

|P (z)|+(|β| − 1)
n√√√√2

{
1 + k2(µ+1)

(
µ
n
|aµ
a0
|kµ−1+1

1+µ
n
|aµ
a0
|kµ+1

)2
}

×(M2
α +M2

α+π)
1
2 ,

which completes the proof of Theorem 3.6. �

Remark 3.7. Dividing both sides of inequality (3.6) by |β| and letting |β| →
∞, we obtain inequality (1.9).

Corollary 3.8. If P ∈ Pn,µ, has no zero in |z| < k, k ≥ 1 and m = min
|z|=k

|P (z)|,

then for every real or complex number β with |β| ≥ 1 and for every real α,

|DβP (z)| ≤ nmax
|z|=1

|P (z)|+(|β| − 1)
n√√√√√2

1+k2(µ+1)

(
µ
n

|aµ|
|a0|−m

kµ−1+1

1+µ
n

|aµ|
|a0|−m

kµ+1

)2


×(M2
α +M2

α+π − 2m2)
1
2 , (3.9)

where Mα is as defined in (1.4).

Proof. The proof of Corollary 3.8 follows on the same lines as that of Theorem
3.6 but instead of applying Lemma 2.5, we use Lemma 2.6. We omit the
details. �

Remark 3.9. Dividing both sides of inequality (3.9) by |β| and letting |β| →
∞, we have inequality (1.10).

Acknowledgments: We are grateful to the referees for their valuable sug-
gestions.
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