• Title/Summary/Keyword: point-based surface

Search Result 963, Processing Time 0.024 seconds

Turbulent Flow Characteristics using Plane Jet on Impingement Surface (평면제트를 이용한 충돌면에서의 난류유동 특성)

  • 윤순현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.429-435
    • /
    • 1998
  • Experiments were conducted to investigate the turbulent flow characteristics from on oblique impingement surface to an plane jet at the jet Reynolds number(Re based on the nozzle width) $3{\times}10^4$ The jet mean velocity and turbulent intensity profiles have been measured along the impingement surface by hot-wire anemometer. The nozzle-to-plate distance(H/B) ranged from 2 to 10 and the oblique angle (a) from 45 to 90 degree. Also the secondary peak of the turbulent intensity was observed at H/B=4 S/B 5 and a=90 degree. It has been found that the stagnation point shifted toward the minor flow region as the oblique angle decreased and the position of the stagnation point nearly coincided with that of the maximum turbulent intensity.

  • PDF

Automatic Generation of the Input Data for Rapid Prototyping from Unorganized Point Cloud Data (임의의 점 군 데이터로부터 쾌속조형을 위한 입력데이터의 자동생성)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.144-153
    • /
    • 2007
  • In order to generate the input data for rapid prototyping, a new approach which is based on the implicit surface interpolation method is presented. In the method a surface is reconstructed by creating smooth implicit surface from unorganized cloud of points through which the surface should pass. In the method an implicit surface is defined by the adaptive local shape functions including quadratic polynomial function, cubic polynomial function and RBF(Radial Basis Function). By the reconstruction of a surface, various types of error in raw STL file including degenerated triangles, undesirable holes with complex shapes and overlaps between triangles can be eliminated automatically. In order to get the slicing data for rapid prototyping an efficient intersection algorithm between implicit surface and plane is developed. For the direct usage for rapid prototyping, a robust transformation algorithm for the generation of complete STL data of solid type is also suggested.

A Study on the Running Type Nipper Pattern Development for Adult men (성인 남성용 런닝형 니퍼패턴 개발)

  • Cho, Pyeong-Hun;Shon, Hoo-Jo;Na, Mi-Hyang
    • Korean Journal of Human Ecology
    • /
    • v.16 no.3
    • /
    • pp.577-585
    • /
    • 2007
  • This research aimed for 20 latter man whose body shape of torso alters remarkably to develop nipper pattern of running type considered characteristic of body shape of 20 latter man to keep rather balanced body shape against middle age when body shape changes extremely. 1. running type nipper pattern design. Pattern of running, lining and nipper were designed by flattening surface shell. A basis line of running pattern is completed by applying reduction ratio after 3 times of modification & complement based on surface shell. Nipper pattern is designed with design line set by a plaster cast based on running pattern line. Lining pattern is designed with lining design line set by a plaster cast based on running type outside material and nipper pattern. 2. Functional evaluation of research and commercial nipper. Functional inspection through dress test was applied 5point evaluation method and the result of functional inspection on the sight of a wearer is that research nipper(running reduction ratio 15%, nipper reduction ratio 18%) averaged more 4.8point but commercial nipper averaged less 1.8point in the aspect of 20 items such as wear sensibility, motional function and external appearance aesthetic. Research running type nipper scored high in order of motional function, looks of side, back, front and whole and wear sensibility. Functional inspection in the point of view of an observer is that research nipper(running reduction ratio 15%, nipper reduction ratio 18%) averaged over 4.8point and commercial nipper averaged under 1.9point in 17 items of external appearance beauty. Research running type nipper marked high in order of looks of back, whole, front and side.

Engineering Elastic-Plastic Fracture Analysis for Semi-Elliptical Surface Cracked Plates Under Combined Bending and Tension (복합하중을 받는 평판에 존재하는 반타원 표면균열의 공학적 탄소성 파괴해석법)

  • Shim, Do-Jun;Kim, Yun-Jae;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1127-1134
    • /
    • 2002
  • The present paper provides an engineering J estimation equation for surface cracked plates under combined bending and tension. The proposed equation is based on the reference stress approach, and the most relevant normalising loads to define the reference stress for accurate J estimations are given for surface cracked plates under combined bending and tension. Comparisons with J results from extensive 3-D FE analyses, covering a wide range of crack geometry, plate geometry and loading combination, show overall good agreement not only at the deepest point but also at arbitrary points along the crack front. for pure tension, agreement between the estimated J and the FE results is excellent, even at the surface point. On the other hand, for pure bending and combined bending and tension, the estimated J values become less accurate for locations close to the surface point. Thus the results in this paper will be useful to assess short-term fracture or low cycle fatigue of surface defects in plates under combined bending and tension.

SURFACE RECONSTRUCTION FROM SCATTERED POINT DATA ON OCTREE

  • Park, Chang-Soo;Min, Cho-Hon;Kang, Myung-Joo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.1
    • /
    • pp.31-49
    • /
    • 2012
  • In this paper, we propose a very efficient method which reconstructs the high resolution surface from a set of unorganized points. Our method is based on the level set method using adaptive octree. We start with the surface reconstruction model proposed in [20]. In [20], they introduced a very fast and efficient method which is different from the previous methods using the level set method. Most existing methods[21, 22] employed the time evolving process from an initial surface to point cloud. But in [20], they considered the surface reconstruction process as an elliptic problem in the narrow band including point cloud. So they could obtain very speedy method because they didn't have to limit the time evolution step by the finite speed of propagation. However, they implemented that model just on the uniform grid. So they still have the weakness that it needs so much memories because of being fulfilled only on the uniform grid. Their algorithm basically solves a large linear system of which size is the same as the number of the grid in a narrow band. Besides, it is not easy to make the width of band narrow enough since the decision of band width depends on the distribution of point data. After all, as far as it is implemented on the uniform grid, it is almost impossible to generate the surface on the high resolution because the memory requirement increases geometrically. We resolve it by adapting octree data structure[12, 11] to our problem and by introducing a new redistancing algorithm which is different from the existing one[19].

New mathematical approach to calculate the geometrical efficiency using different radioactive sources with gamma-ray cylindrical shape detectors

  • Thabet, Abouzeid A.;Hamzawy, A.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1271-1276
    • /
    • 2020
  • The geometrical efficiency of a source-to-detector configuration is considered to be necessary in the calculation of the full energy peak efficiency, especially for NaI(Tl) and HPGe gamma-ray spectroscopy detectors. The geometrical efficiency depends on the solid angle subtended by the radioactive sources and the detector surfaces. The present work is basically concerned to establish a new mathematical approach for calculating the solid angle and geometrical efficiency, based on conversion of the geometrical solid angle of a non-axial radioactive point source with respect to a circular surface of the detector to a new equivalent geometry. The equivalent geometry consists of an axial radioactive point source with respect to an arbitrary elliptical surface that lies between the radioactive point source and the circular surface of the detector. This expression was extended to include coaxial radioactive circular disk source. The results were compared with a number of published data to explain how significant this work is in the efficiency calibration procedure for the γ-ray detection systems, especially in case of using isotropic radiating γ-ray sources in the form of point and disk shapes.

Engineering J-Integral Estimation for Semi-Elliptical Surface Cracked Plates in Tension (인장하중이 작용하는 평판에 존재하는 반타원 표면균열의 J-적분 계산식)

  • Sim, Do-Jun;Kim, Yun-Jae;Choe, Jae-Bung;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1777-1784
    • /
    • 2001
  • This paper provides d simplified engineering J estimation method fur semi-e1liptical surface cracked plates in tension, based on the reference stress approach. Note that the essential element of the reference stress approach is the plastic limit lead in the definition of the reference stress. However, for surface cracks, the definition of the limit load is ambiguous ("local" or "global"limit lead), and thus the most relevant limit load (and thus reference stress) for the J estimation should be determined. In the present work, such limit load solution is found by comparing reference stress bated J results with those from extensive 3-D finite element analyses. Validation of the proposed equation against FF J results based on tactual experimental tensile data of a 304 stainless steel shows excellent agreements not only far the J values at the deepest point but also for those at an arbitrary paint along the crack front, including at the surface point. Thus the present results provide a good engineering tool for elastic-plastic fracture analyses of surface cracked plates in tension.

Development of a device to improve the precision of water surface identification for MeV electron beam dosimetry

  • F. Okky Agassy;Jong In Park;In Jung Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1431-1440
    • /
    • 2024
  • The study aimed to develop a laser-based distance meter (LDM) to improve water surface identification for clinical MeV electron beam dosimetry, as inaccurate water surface determination can lead to imprecise positioning of ionization chambers (ICs). The LDM consisted of a laser ranging sensor, a signal processing microcontroller, and a tablet PC for data acquisition. I50 (the water depth at which ionization current drops to 50 % of its maximum) measurements of electron beams were performed using six different types of ICs and compared to other water surface identification methods. The LDM demonstrated reproducible I50 measurements with a level of 0.01 cm for all six ICs. The uncertainty of water depth was evaluated at 0.008 cm with the LDM. The LDM also exposed discrepancies between I50 measurements using different ICs, which was partially reduced by applying an optimum shift of IC's point of measurement (POM) or effective point of measurement (EPOM). However, residual discrepancies due to the energy dependency of the cylindrical chamber's EPOM caused remained. The LDM offers straightforward and efficient means for precision water surface identification, minimizing reliance on individual operator skills.

Anodizing science of valve metals

  • Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.96.1-96.1
    • /
    • 2017
  • This presentation introduces anodizing science of typical valve metals of Al, Mg and Ti, based on the ionic transport through the andic oxide films in various electrolyte compositions. Depending on the electrolyte composition, metal ions and anions can migrate through the andic oxide film without its dielectric breakdown when point defects are present within the anodic oxide films under high applied electric field. On the other hand, if anodic oxide films are broken by local joule heating due to ionic migration, metal ions and anions can migrate through the broken sites and meet together to form new anodic films, known as plasma electrolytic oxidation (PEO) treatment. In this presentation, basics of conventional anodizing and PEO methods are introduced in detail, based on the ionic migration and movement mechanism through anodic oxide films by point defects and by local dielectric breakdown of anodic oxide films.

  • PDF

A Study on the Optimal Probe Path Generation for Sculptured Surface Inspection Using the Coordinate Measuring Machine (3차원 측정기를 이용한 자유곡면 측정시 최적의 경로 결정에 관한 연구)

  • Cho, Myung-Wo;Yi, Seung-Jong;Kim, Moon-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.121-129
    • /
    • 1995
  • The objective of this research is to develop an effective inspection planning strategy for sculptured surfaces by using 3-dimensional Coordinate Measuring Machine (CMM). First, the CAD/CAM database is generated by using the Bezier surface patch mathod and variable cutter step size approach for design and machining of the workpiece model. Then, optimum measuring point locations are determained based on the mean curvature analysis to obtain more effective inspection results for the given sample numbers. An optimal probe sequence generation method is proposed by implementing the Traveling Salesperson (TSP) algorithm and new guide point selection methods are suggested based on the concepts of the variable distance between the first and second guide points. Finally, simulation study and experimental work show the effectiveness of the proposed strategy.

  • PDF