• 제목/요약/키워드: point clouds data

검색결과 157건 처리시간 0.028초

포인트 클라우드 자료의 도심지 Geo-Referencing 방안 연구 (Research on Geo-Referencing Methodology of Point Clouds Data in Urban Area)

  • 조형식;손홍규;한수희;황새미나
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2010년 춘계학술발표회 논문집
    • /
    • pp.285-287
    • /
    • 2010
  • It is recently enlarged to necessity of 3D spatial information model in urban areas. and in order to that, It is increased to use the terrestrial LiDAR. The Point clouds which are received by terrestrial LiDAR take a relateive coordinate. For transform into absolute coordinate, it carry out GPS surveying. However, it is difficult to geo-referencing of point clouds using the GPS due to high buildings and facilities in urban area. This study suggests a methodology, that is geo-referencing of point clouds which is received from terresstrial LiDAR in urban area and then verified accuracy of geo-referencing of point clouds. In order to geo-Referencing of point clouds which are received in Engineering building of Yonsei Univ., it was be setout through GPS surveying, and then obtained absolute coordinate of real building. Using this coordinate, It was operated geo-referencing of point clouds, verified accuracy between check point and geo-referenced point clouds. As a result, RMSE of check point shows that GPS surveying is 6.9~8.0cm.

  • PDF

Pointwise CNN for 3D Object Classification on Point Cloud

  • Song, Wei;Liu, Zishu;Tian, Yifei;Fong, Simon
    • Journal of Information Processing Systems
    • /
    • 제17권4호
    • /
    • pp.787-800
    • /
    • 2021
  • Three-dimensional (3D) object classification tasks using point clouds are widely used in 3D modeling, face recognition, and robotic missions. However, processing raw point clouds directly is problematic for a traditional convolutional network due to the irregular data format of point clouds. This paper proposes a pointwise convolution neural network (CNN) structure that can process point cloud data directly without preprocessing. First, a 2D convolutional layer is introduced to percept coordinate information of each point. Then, multiple 2D convolutional layers and a global max pooling layer are applied to extract global features. Finally, based on the extracted features, fully connected layers predict the class labels of objects. We evaluated the proposed pointwise CNN structure on the ModelNet10 dataset. The proposed structure obtained higher accuracy compared to the existing methods. Experiments using the ModelNet10 dataset also prove that the difference in the point number of point clouds does not significantly influence on the proposed pointwise CNN structure.

생성적 적대 신경망 기반 3차원 포인트 클라우드 향상 기법 (3D Point Cloud Enhancement based on Generative Adversarial Network)

  • Moon, HyungDo;Kang, Hoonjong;Jo, Dongsik
    • 한국정보통신학회논문지
    • /
    • 제25권10호
    • /
    • pp.1452-1455
    • /
    • 2021
  • Recently, point clouds are generated by capturing real space in 3D, and it is actively applied and serviced for performances, exhibitions, education, and training. These point cloud data require post-correction work to be used in virtual environments due to errors caused by the capture environment with sensors and cameras. In this paper, we propose an enhancement technique for 3D point cloud data by applying generative adversarial network(GAN). Thus, we performed an approach to regenerate point clouds as an input of GAN. Through our method presented in this paper, point clouds with a lot of noise is configured in the same shape as the real object and environment, enabling precise interaction with the reconstructed content.

LiDAR Measurement Analysis in Range Domain

  • Sooyong Lee
    • 센서학회지
    • /
    • 제33권4호
    • /
    • pp.187-195
    • /
    • 2024
  • Light detection and ranging (LiDAR), a widely used sensor in mobile robots and autonomous vehicles, has its most important function as measuring the range of objects in three-dimensional space and generating point clouds. These point clouds consist of the coordinates of each reflection point and can be used for various tasks, such as obstacle detection and environment recognition. However, several processing steps are required, such as three-dimensional modeling, mesh generation, and rendering. Efficient data processing is crucial because LiDAR provides a large number of real-time measurements with high sampling frequencies. Despite the rapid development of controller computational power, simplifying the computational algorithm is still necessary. This paper presents a method for estimating the presence of curbs, humps, and ground tilt using range measurements from a single horizontal or vertical scan instead of point clouds. These features can be obtained by data segmentation based on linearization. The effectiveness of the proposed algorithm was verified by experiments in various environments.

Long-term shape sensing of bridge girders using automated ROI extraction of LiDAR point clouds

  • Ganesh Kolappan Geetha;Sahyeon Lee;Junhwa Lee;Sung-Han Sim
    • Smart Structures and Systems
    • /
    • 제33권6호
    • /
    • pp.399-414
    • /
    • 2024
  • This study discusses the long-term deformation monitoring and shape sensing of bridge girder surfaces with an automated extraction scheme for point clouds in the Region Of Interest (ROI), invariant to the position of a Light Detection And Ranging system (LiDAR). Advanced smart construction necessitates continuous monitoring of the deformation and shape of bridge girders during the construction phase. An automated scheme is proposed for reconstructing geometric model of ROI in the presence of noisy non-stationary background. The proposed scheme involves (i) denoising irrelevant background point clouds using dimensions from the design model, (ii) extracting the outer boundaries of the bridge girder by transforming and processing the point cloud data in a two-dimensional image space, (iii) extracting topology of pre-defined targets using the modified Otsu method, (iv) registering the point clouds to a common reference frame or design coordinate using extracted predefined targets placed outside ROI, and (v) defining the bounding box in the point clouds using corresponding dimensional information of the bridge girder and abutments from the design model. The surface-fitted reconstructed geometric model in the ROI is superposed consistently over a long period to monitor bridge shape and derive deflection during the construction phase, which is highly correlated. The proposed scheme of combining 2D-3D with the design model overcomes the sensitivity of 3D point cloud registration to initial match, which often leads to a local extremum.

Surface Extraction from Point-Sampled Data through Region Growing

  • Vieira, Miguel;Shimada, Kenji
    • International Journal of CAD/CAM
    • /
    • 제5권1호
    • /
    • pp.19-27
    • /
    • 2005
  • As three-dimensional range scanners make large point clouds a more common initial representation of real world objects, a need arises for algorithms that can efficiently process point sets. In this paper, we present a method for extracting smooth surfaces from dense point clouds. Given an unorganized set of points in space as input, our algorithm first uses principal component analysis to estimate the surface variation at each point. After defining conditions for determining the geometric compatibility of a point and a surface, we examine the points in order of increasing surface variation to find points whose neighborhoods can be closely approximated by a single surface. These neighborhoods become seed regions for region growing. The region growing step clusters points that are geometrically compatible with the approximating surface and refines the surface as the region grows to obtain the best approximation of the largest number of points. When no more points can be added to a region, the algorithm stores the extracted surface. Our algorithm works quickly with little user interaction and requires a fraction of the memory needed for a standard mesh data structure. To demonstrate its usefulness, we show results on large point clouds acquired from real-world objects.

3차원 포인트 클라우드 데이터를 활용한 객체 탐지 기법인 PointNet과 RandLA-Net (PointNet and RandLA-Net Algorithms for Object Detection Using 3D Point Clouds)

  • 이동건;지승환;박본영
    • 대한조선학회논문집
    • /
    • 제59권5호
    • /
    • pp.330-337
    • /
    • 2022
  • Research on object detection algorithms using 2D data has already progressed to the level of commercialization and is being applied to various manufacturing industries. Object detection technology using 2D data has an effective advantage, there are technical limitations to accurate data generation and analysis. Since 2D data is two-axis data without a sense of depth, ambiguity arises when approached from a practical point of view. Advanced countries such as the United States are leading 3D data collection and research using 3D laser scanners. Existing processing and detection algorithms such as ICP and RANSAC show high accuracy, but are used as a processing speed problem in the processing of large-scale point cloud data. In this study, PointNet a representative technique for detecting objects using widely used 3D point cloud data is analyzed and described. And RandLA-Net, which overcomes the limitations of PointNet's performance and object prediction accuracy, is described a review of detection technology using point cloud data was conducted.

A Two-Phase Approach of Progressive Mesh Reconstruction from Unorganized Point Clouds

  • Zhang, Hongxin;Liu, Hua;Hua, Wei;Bao, Hujun
    • International Journal of CAD/CAM
    • /
    • 제7권1호
    • /
    • pp.103-112
    • /
    • 2007
  • This paper presents a practical approach for surface reconstruction from unoriented point clouds. Instead of estimating local surface orientation, we first generate a set of depth images from the input point clouds, and a coarse mesh is then generated based on them by space carving techniques. The resultant mesh is progressively refined by local mesh refinement and optimization according to surface distance measure. A manifold mesh approximating the input points within an given tolerance is finally obtained. Our approach is easy to implement, but has the ability to outputs high quality meshes in different resolutions. We show that the proposed approach is not sensitive to several types of data disfigurement and is able to reconstruct models robustly from variance input data.

Accuracy Comparison Between Image-based 3D Reconstruction Technique and Terrestrial LiDAR for As-built BIM of Outdoor Structures

  • Lee, Jisang;Hong, Seunghwan;Cho, Hanjin;Park, Ilsuk;Cho, Hyoungsig;Sohn, Hong-Gyoo
    • 한국측량학회지
    • /
    • 제33권6호
    • /
    • pp.557-567
    • /
    • 2015
  • With the increasing demands of 3D spatial information in urban environment, the importance of point clouds generation techniques have been increased. In particular, for as-built BIM, the point clouds with the high accuracy and density is required to describe the detail information of building components. Since the terrestrial LiDAR has high performance in terms of accuracy and point density, it has been widely used for as-built 3D modelling. However, the high cost of devices is obstacle for general uses, and the image-based 3D reconstruction technique is being a new attraction as an alternative solution. This paper compares the image-based 3D reconstruction technique and the terrestrial LiDAR in point of establishing the as-built BIM of outdoor structures. The point clouds generated from the image-based 3D reconstruction technique could roughly present the 3D shape of a building, but could not precisely express detail information, such as windows, doors and a roof of building. There were 13.2~28.9 cm of RMSE between the terrestrial LiDAR scanning data and the point clouds, which generated from smartphone and DSLR camera images. In conclusion, the results demonstrate that the image-based 3D reconstruction can be used in drawing building footprint and wireframe, and the terrestrial LiDAR is suitable for detail 3D outdoor modeling.