It is recently enlarged to necessity of 3D spatial information model in urban areas. and in order to that, It is increased to use the terrestrial LiDAR. The Point clouds which are received by terrestrial LiDAR take a relateive coordinate. For transform into absolute coordinate, it carry out GPS surveying. However, it is difficult to geo-referencing of point clouds using the GPS due to high buildings and facilities in urban area. This study suggests a methodology, that is geo-referencing of point clouds which is received from terresstrial LiDAR in urban area and then verified accuracy of geo-referencing of point clouds. In order to geo-Referencing of point clouds which are received in Engineering building of Yonsei Univ., it was be setout through GPS surveying, and then obtained absolute coordinate of real building. Using this coordinate, It was operated geo-referencing of point clouds, verified accuracy between check point and geo-referenced point clouds. As a result, RMSE of check point shows that GPS surveying is 6.9~8.0cm.
Three-dimensional (3D) object classification tasks using point clouds are widely used in 3D modeling, face recognition, and robotic missions. However, processing raw point clouds directly is problematic for a traditional convolutional network due to the irregular data format of point clouds. This paper proposes a pointwise convolution neural network (CNN) structure that can process point cloud data directly without preprocessing. First, a 2D convolutional layer is introduced to percept coordinate information of each point. Then, multiple 2D convolutional layers and a global max pooling layer are applied to extract global features. Finally, based on the extracted features, fully connected layers predict the class labels of objects. We evaluated the proposed pointwise CNN structure on the ModelNet10 dataset. The proposed structure obtained higher accuracy compared to the existing methods. Experiments using the ModelNet10 dataset also prove that the difference in the point number of point clouds does not significantly influence on the proposed pointwise CNN structure.
Recently, point clouds are generated by capturing real space in 3D, and it is actively applied and serviced for performances, exhibitions, education, and training. These point cloud data require post-correction work to be used in virtual environments due to errors caused by the capture environment with sensors and cameras. In this paper, we propose an enhancement technique for 3D point cloud data by applying generative adversarial network(GAN). Thus, we performed an approach to regenerate point clouds as an input of GAN. Through our method presented in this paper, point clouds with a lot of noise is configured in the same shape as the real object and environment, enabling precise interaction with the reconstructed content.
Light detection and ranging (LiDAR), a widely used sensor in mobile robots and autonomous vehicles, has its most important function as measuring the range of objects in three-dimensional space and generating point clouds. These point clouds consist of the coordinates of each reflection point and can be used for various tasks, such as obstacle detection and environment recognition. However, several processing steps are required, such as three-dimensional modeling, mesh generation, and rendering. Efficient data processing is crucial because LiDAR provides a large number of real-time measurements with high sampling frequencies. Despite the rapid development of controller computational power, simplifying the computational algorithm is still necessary. This paper presents a method for estimating the presence of curbs, humps, and ground tilt using range measurements from a single horizontal or vertical scan instead of point clouds. These features can be obtained by data segmentation based on linearization. The effectiveness of the proposed algorithm was verified by experiments in various environments.
This study discusses the long-term deformation monitoring and shape sensing of bridge girder surfaces with an automated extraction scheme for point clouds in the Region Of Interest (ROI), invariant to the position of a Light Detection And Ranging system (LiDAR). Advanced smart construction necessitates continuous monitoring of the deformation and shape of bridge girders during the construction phase. An automated scheme is proposed for reconstructing geometric model of ROI in the presence of noisy non-stationary background. The proposed scheme involves (i) denoising irrelevant background point clouds using dimensions from the design model, (ii) extracting the outer boundaries of the bridge girder by transforming and processing the point cloud data in a two-dimensional image space, (iii) extracting topology of pre-defined targets using the modified Otsu method, (iv) registering the point clouds to a common reference frame or design coordinate using extracted predefined targets placed outside ROI, and (v) defining the bounding box in the point clouds using corresponding dimensional information of the bridge girder and abutments from the design model. The surface-fitted reconstructed geometric model in the ROI is superposed consistently over a long period to monitor bridge shape and derive deflection during the construction phase, which is highly correlated. The proposed scheme of combining 2D-3D with the design model overcomes the sensitivity of 3D point cloud registration to initial match, which often leads to a local extremum.
As three-dimensional range scanners make large point clouds a more common initial representation of real world objects, a need arises for algorithms that can efficiently process point sets. In this paper, we present a method for extracting smooth surfaces from dense point clouds. Given an unorganized set of points in space as input, our algorithm first uses principal component analysis to estimate the surface variation at each point. After defining conditions for determining the geometric compatibility of a point and a surface, we examine the points in order of increasing surface variation to find points whose neighborhoods can be closely approximated by a single surface. These neighborhoods become seed regions for region growing. The region growing step clusters points that are geometrically compatible with the approximating surface and refines the surface as the region grows to obtain the best approximation of the largest number of points. When no more points can be added to a region, the algorithm stores the extracted surface. Our algorithm works quickly with little user interaction and requires a fraction of the memory needed for a standard mesh data structure. To demonstrate its usefulness, we show results on large point clouds acquired from real-world objects.
Research on object detection algorithms using 2D data has already progressed to the level of commercialization and is being applied to various manufacturing industries. Object detection technology using 2D data has an effective advantage, there are technical limitations to accurate data generation and analysis. Since 2D data is two-axis data without a sense of depth, ambiguity arises when approached from a practical point of view. Advanced countries such as the United States are leading 3D data collection and research using 3D laser scanners. Existing processing and detection algorithms such as ICP and RANSAC show high accuracy, but are used as a processing speed problem in the processing of large-scale point cloud data. In this study, PointNet a representative technique for detecting objects using widely used 3D point cloud data is analyzed and described. And RandLA-Net, which overcomes the limitations of PointNet's performance and object prediction accuracy, is described a review of detection technology using point cloud data was conducted.
This paper presents a practical approach for surface reconstruction from unoriented point clouds. Instead of estimating local surface orientation, we first generate a set of depth images from the input point clouds, and a coarse mesh is then generated based on them by space carving techniques. The resultant mesh is progressively refined by local mesh refinement and optimization according to surface distance measure. A manifold mesh approximating the input points within an given tolerance is finally obtained. Our approach is easy to implement, but has the ability to outputs high quality meshes in different resolutions. We show that the proposed approach is not sensitive to several types of data disfigurement and is able to reconstruct models robustly from variance input data.
With the increasing demands of 3D spatial information in urban environment, the importance of point clouds generation techniques have been increased. In particular, for as-built BIM, the point clouds with the high accuracy and density is required to describe the detail information of building components. Since the terrestrial LiDAR has high performance in terms of accuracy and point density, it has been widely used for as-built 3D modelling. However, the high cost of devices is obstacle for general uses, and the image-based 3D reconstruction technique is being a new attraction as an alternative solution. This paper compares the image-based 3D reconstruction technique and the terrestrial LiDAR in point of establishing the as-built BIM of outdoor structures. The point clouds generated from the image-based 3D reconstruction technique could roughly present the 3D shape of a building, but could not precisely express detail information, such as windows, doors and a roof of building. There were 13.2~28.9 cm of RMSE between the terrestrial LiDAR scanning data and the point clouds, which generated from smartphone and DSLR camera images. In conclusion, the results demonstrate that the image-based 3D reconstruction can be used in drawing building footprint and wireframe, and the terrestrial LiDAR is suitable for detail 3D outdoor modeling.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.