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Abstract- This paper presents a practical approach for surface reconstruction from unoriented point clouds. Instead of estimating 
local surfoce ❶rientati이% we first generate a set of depth images from the input point clouds, and a coarse mesh is then generated 
based on them by space carving twhniques. The resultant mesh is progressively refined by local mesh refinement and optimization 
according to surface distance measure. A manifold mesh approximating the input points within an given tolerance is finally obtained. 
Our approach is easy to implement, but has the ability to outputs high quality meshes in different resolutions. We 아that the 
proposed approach is not sensitive to several types of data disfigurement and is able to reconstruct models robustly from variance 
input data.
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1. Introduction

In this paper, we present a 2-phase solution for the 
surface reconstruction problem: how to reconstruct a high 
quality mesh surfece from 3D point clouds without knowing 
normal infimiation. As the wide range of modeling applications 
rely on surfece reconstruction from scatted data points, many 
automatic reconstruction algorithms were developed in the 
past two decades. Most of them, however, req니ire sufficient 
sampling, and even some of them require additional accurate 
surfece normal estimations. Unfortunately, the real input data 
does not always satisfy these precision requirements. Moreover, 
laige amount of imperfect factors, e.g. feke points, incomplete 
data and different types of noise (see Fig. 1), may interfere 
with the reconstruction process. As pointed out by [18], it is 
still a difficult problem to reconstruct manifold surfeces from 
unoriented point sets.

Previous dominant approaches mainly apply the theories 
of Xbronoi diagrams from computational geometry or use 
of volumetric reconstruction tedmiques. Most \bronoi based 
approaches reconstruct mesh by using the inp니t points as 
positions of vertices directly. Therefore it is difficult to produce 
a smooth and manifold surfece from a noisy and poorly 
sampled point cloud. While volumetric methods, on the other 
hand, tend to define distance functions to the point samples 
and then relieve level-set surfaces. They suffer the problems 
of high memory storage consumption for extracting shape details 
and unstable normal estimations when densely sampling around 
sharp or thin features.

M龟 propose a novel two-step reconstruction approach in this 

paper Diflferent from previous approaches, the main advantage 
of our approach is that no normal information is required. 
We leverage visibility information inferring surfece orientation 
instead of directly estimating surface normal vectors for the 
purpose of robust surface reconstruction. In a human vision 
system (HVS), shapes are mainly observed and recognized 
by silhouette and depth. It is known that a visual hull can be 
well constmcted from silhouettes, and therefore global shape 
orientation can be roughly learnt from it. Meanwhile depth 
quantities provide acc니rate information, which can be used 
to deal with concave aspects. So the major motivation of 
our work is to analog the shape reconstruction process of 
HVS for reconstructing topologically correct shape by taking 
a set of depth snapshots (see Section 4).

Another concerning of our work is geometry details of 
the target models. An ideal reconstruction process should 
efficiently reconstruct shape details as much as possible from 
noisy input, \blumetric approaches mainly use hierarchical 
space subdividing to increase reconstruction resolutions for 
extracting these details. However, it is a space consuming 
solution. Contrary, 아나r contribution is to directly refine mesh 
surfaces so as to capture high frequency details via surfece 
up-sampling. Therefore our surface based refinement approach 
consumes smaller storage spaces and can reach higher 
resolution than volumetric based ones.

2. Related work

We briefly review typical approaches on surface reconstruction 
from unoriented points and related techniques in this section.

Wonoi diagrams based methods, e.g. Ihe “crust' algorithm 
[2,3] and [6,12,13], reconstruct surfece boundary by erasing 
those cells that do not belong to the volume bounded by the 
sampled surfece.

These methods are good at processing surfaces with high
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F^. 1. Terra-cotta warrior. The left figure illustrates the challenging 
problems of real scanned data. And the right model is a reconstructed 
result by our proposed method.

genus. And they work feirly well when 1he sampling data 
are sufficiently dense and smooth. Many other methods 
[5,27] tend to generate surfeces in an incremental manner. 
In all those methods, however, the local topology may not 
be correct and holes may appear due to under-sampling. 
Recent work in this direction such as [23] can now dealing 
with noisy input data.

Laige amount of studies cast the surface reconstruction 
problem as a data fitting mission for tackling noise. A specific 
distance-like measure in general is formulated to find a best 
fitting one. These methods in this field can be roughly classified 
into parametric-based and implicit surfaces-based ones.

Parametric-based approaches [16,17,28] assume that the 
니nderlying topology of target surface is known, which is 
homeomorphism to a given parametric domain. And they 
mainly gply con屮act surfece descriptions. Specifically, several 
recent-developed methods [29] deform an initial surfece along 
an energy field induced by the input points. Such kind of 
approaches is good for produce smoothed surfeces. However, 
there exist two drawbacks when applying them: the potential 
difhc니Ities for generating initial topological-correct surface 
in high genus cases, and finding appropriate surfece fitting 
parameters.

Approaches such as [10,11,14,19,25] reconstruct surface 
based on implicit functions which indicate the outlier and 
inside of the taiget surface. These algoritiims depend on 
relatively acc니mte estimations of surface orientation and 
unifonned sampling of input data, which actually are crucial 
fbr the real scanned data. In addition, tiiey may introduce 
topological artifacts for the data containing poorly aligned 
scan patches due to the distance-like function definition.

In vision research, shape from X, e.g. from shading, 
silhouette and stereopsis, are relevant topics of surface 
reconstruction. Visual hulls [21] and photo hulls [20] are typical 

approaches of volumetric carving to extract shape geometry 
from image information. Although the first phase of our 
approaches is also a space carving one. Different from tiiem, 
our input are point cloud data which maintain more accurate 
shape information, and deptii images are captured by a virtual 
camera for providing plausible surface orientations.

The latest trend for combining vision techniques with 
surfece reconstruction is the graph cut optimization, e.g. [18, 
26]. It is a global optimization technique to efficiently solve 
image and discrete volumetric segmentation problems by 
re-formulating them as a minimal cut problem of a spatial 
graph structure [9]. Unfortunately implementing these methods 
usually require discrete volumetric descriptions. Therefore it 
is difficult to reach high reconstruction resolution because 
of cubic increased space consumption.

Surface tessellation by using Marching Cubes [22] and 
Marching Tetrahedra [7] is a critical step in surfece extraction. 
Besides geometric accuracy may drop after this process, 
result meshes are normally in low quality. These meshes 
contain lots of thin and elon^ied triangles with ugly topological 
connectivity. It is inconvenient fbr succeeded modeling 
applications. Thus remeshing techniques always act as a 
post-processing step for remedying 1his disadvantage. Recent 
advances of remeshing [1] are mainly focused on creating 
desired nice meshes after a high resolution surface has been 
already known. Our methodology principle, alternatively, is 
to directly reconstruct a satisfied mesh botii in high mesh 
quality and geometric accuracy.

3. Method Overview

Our algorithm consists of following two phases, i.e., coarse 
model generation and progressive mesh refinement An example 
of the wh이e reconstructing process is illustrated in Fig. 2.

Phase I is initial mesh generation. In this phase, we generate 
a coarse model, which is homeomorphism to the underlying 
taiget surface, as the input data for the following process. 
As illustrated in Fig. 2, tiie input points are observed by a 
virtual camera fom dififenent positions and directions, resulting 
a set of depth images. Then a confidence map is calculated 
according to these depth images. Necessary user interactions 
are also involved to guarantee the correctness of the output 
surfece. When the space confidence map is b니ilt up, we can 
easily extract the initial mesh surface. Details are presented 
in Section 4.

Phase II is progressive mesh refinement. In this phase, an 
error fimction is introduced to measure the distance between 
the reconstructed surfece and input points. Then triangles in 
relatively laige error are split. And new generated vertices 
are moved to the appropriate position according to input 
points so as to decreasing distance error. A remeshing process 
is also required in this phase. In Section 5, we will describe 
the refinement process in detail

4. Coarse Mesh Generation

We present the process of generating coarse model in this
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Fig. 2. Illustration of method overview.

section. The whole process consists of taking depth snapshots, 
data cleaning, confidence map computing and triangular mesh 
extraction, consequently.

4.1. Depth snapshots
In our approach, the input data is a set of 3D points P 

without knowing orientation information. Initially, all input 
point/P 티끼 0.WR 盘=1,2,.. jV} are normalized by scabng 
so that they fall into the cube [-1,1]3.

Ib capture geometric infomation, we take a group of 
depth images fbr P by a virtual camera from different view 
points and directions which are presented as {(昭；叫)| i = 
12*.  /刀}• In our implementation, data P is rendsed in a 3D 
environment (based on OpenGL API) by using orthomorphic 
projection with depth test. For each point 丿为，its color is 
evaluated according to its depth value in the camera coordinate 
system. That is Col아S) = (z(p»； z(p); z(pz)) with

如)=1 0 DepMp)-Nec*stDepth  
FarthestDepth-NearestDepth

Here the function Depth(p) returns the z value of point p 
in the camera coordinate system. Larger z(p) means nearer 
to the nearest plan. And we set background color of these 
images as black, i.e., z(p) = 0. A set of snapshots which 
indicates dep山 infomiation are then obtained. We call them 
depth snapshots.

The sampling manner {(0方；vd^)\ i= 1, of above 
virtual acquiring procedure is quite flexible. The only constraint 
of a sampling manner is the whole visible hull of a give 
data shall be covered. Commonly, we set sparse view points 
on the bounding sphere of data P. The view points in our 
prototype system are selected at vpt = (cos(z0, sin(泡),0) 
with 0=27rl (m-2). And two additional viewpoints are top 
and bottom the sphere. The orientations of camera is then 
set to be aimed at the sphere center, i.e., t洛=t物.Hence 
the sampling process can be executed automatically. These 
deptti snapshots can also be specified by user, to reduce the 
amount of images. In addition, few more depth snap아lots may 
be manually captured to emphasize sampling on specific parts.

Overall, capturing depth snapshots is very efficient. In all 
our experiments, 8〜15 depth snapshots are sufficient for 

generating the coarse mesh, since depth information is more 
accurate than solely visibility mask. And the average time 
to process one depth snapshot is less than one second.

The advantage of using depth snapshots is twofold. One 
is that visibility and orientations of underlying target surface 
are well captured by these depth images. The other is that 
concave shape features can be more accurately described 
and less images are required comparing with the silhouette 
or conto니t based image descriptions for space carving, e.g. 
the visual hulls.

4.2. Confidence Map Estimation
Once a set of snapshots in hand, we compute a confidence 

map in vicinity of these processed point samples, similar to 
many volumetric based approaches (e.g. [11]). We compute 
these confidence values as a distance-like function (p: v 
->cg[-1,1] over the voxels v g K in a volumetric grid, 
where c can be viewed as the pseudo-distance of a voxel to 
the visible boundary of underlying solid respected to the 
point cloudP The map ^represents confidence values which 
is inside (negative) or o나tside (positive) of the unknown 
watertight surface.

Its calculating is performed in a cumulative way. Simultaneous 
to the sampling of depth snapshots, the value of confidence 
map is updated when a new depth image is added. For the 
农th snapshots " let dk(y) be the value to indicate whether 
the voxel v is the distance between v and the ios-surfece 
(see Fig. 3). It is calculated by the following formula:

勿(v) = 가(v)-c*(v).

In Eqn. (2), the function c^y) returns the first channel 
value of the corresponding 2D pixel color of point v projected 
in the A-th ima응e. The value zk stands for the depth of v 
computed by Eq. 1. Let m be the number of the sampling 
images, the confidence map o(v) is calculated as follow:

(p(v) = max{dk(v)k =1,2,...,初}.

4.3. Data Cleaning
To obtain a well-defined confidence map, data cleaning 

of point clouds is an essential pre-process step before that.
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Fig. 3. Depth snapshots and confidence map. The dark gray region 
H is a hole covered by the white color.

When using optical scanning device, scanned data may contain 
ghost aspects and incomplete parts as shown in Fig. 4. They 
cause difficulties and unsatisfied results. Fortunately, a set of 
2D depth image has been alreatfy c^tured. We appfy following 
image based operations to avoid above addressed problems.

Fake Points. Note that these &ke points, which should 
be discarded, can be well observed from depth snapshots. 
We therefore paint all the pixels which correspond to feke 
data in black. And simultaneously, corresponding points are 
removed from the point set P. After that, we regenerate all 
depth snapshots for the lack of sampling objects in reasonable 
visible size. Here, notice that all the painted fake points in 
the snapshots should be clearly observed and do not 
occlude any actually data (see Fig 4).

Incomplete parts or holes. As the input points are 
distributed sparsely in 3D space, pixels in depth snapshots 
may be discon血iuo니s, and may not group into regions (see 
Fig. 4). Therefore, when processing snapshots & we 니% an 

additional rendering pass in the same view position to generate 
a smoothed snapshots E by increasing the point size, so as 
to make continuous regions. We can cover all the small under 
sampling p狱ts simply by this method.

Regarding for large incomplete aspects or holes, following 
operations are performed. As shown in Fig. 5, the foot part 
of the baby model contains hole, where the sampling points 
are unavailable. If it is not well fixed, the confidence map in 
the next section will not be correctly calculated. Thus we 
simply fill this hole in white color, lb achieve this goal, the 
region represent the hole is painted in white color, i.e. by 
setting the confidence value to be 1. That means the distance 
fimction d^x) of die points projected into the region of hole 
are not contributed to tiie in the 妇th image. Altiiough it
is a conservative estimation by doing so. The final confidence 
values of these points, however; are corrected by other sngshots 
from different view directions.

Topological correctness control. As mentioned above, 
we covered all the small gaps in snapshots by increasing tiie 
imdering point size directly But sometimes, this straightforward 
method may lead to merging of unexpected disconnected 
regions. For this reason, we generate a binary image for each 
depth snapshots by setting value 1 for these pixels with non 
black color and 0 for black pixels. Then several steps of a 
morphological dilation operator are perfbmied to obtain a 
visibility mask. In this step, some special tagged pixels may 
be inserted into these binary images to constrain the dilation 
regions (see Fig 4, the red pixels are tagged pixels).

4.4. Mesh extraction
The initial coarse mesh is extracted as the zero level-set 

Result modelSnap image 버티 e fixing

Fig. 5. Fixing a hole in the rag baby model. The observed hole is painted with white color.
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of the confidence map. To generate this mesh, we employ a 
marching cubes variant with a lookup table that resolves 
ambiguous cases [24]. As we only need a mesh in low 
resolution, the sampling voxel size can be relatively large. 
This makes satisfied time and space eflficiency at this stage.

5. Progressive Mesh Refinement

Once an initial mesh is obtained, the left issue is to 
extracting geometry details from the original point cloud. 
Inspired by previous surfece based approaches, our solution 
in principle is a data fitting one. That is to achieve low 
approximating error as well as good shape quality. Precisely, 
tiiis optimization principle can be written as:

吁[%(时)⑸], (4)

where Em is a distance measure to control reconstruction 
precision, and Es is a smoothness term with weight w to 
prevent self-intersection problem during fitting. However, the 
optimization formulation is always non-linear and is seldom 
in close form, i.e., the problem cannot be solved directly. 
Further more producing high quality meshes are additional 
requirement for solid modeling applications.

Based on above concerning, we propose an iterative algorithm 
for detail extracting. The detailed pseudo code is listed in 
Fig. 6. Decreasing Em is achieved in a greedy optimization 
way. In each approximation iteration step, candidate vertices 
are located at the positions where large local approximation 
error are occurs. And then these vertices are inserted into the 
target mesh to increase approximation accuracy. A successive 
remeshing procedure is performed to provide good mesh 
quality and to control sampling resolution.

Algorithm 5-1： Pb0gMe.shRefine(5(), P,

pme里dm* 턚 InsebtCandidateVert(5/P)
for each 西.€ V

卩L Fv사사稿tFm半(S 血)；

for each " 은; S

호 *— Av is RAG EE- R.ROR ( ):
for each € S

do if > € iNSEirrVEitrEX ):
return (S);

main
S _ So：为—0：

while P) > 毛

(Inseki'Ca n di dateV eivt(S, P)：

k j k + 1:
梦댢tarn (S);

Fig. 6. The pseudo code of progressive mesh refinement.

5.1. Insert candidate vertices
In this paper, we utilize the Hausdorff distance function to 

measure the errors between approximating mesh surface S 
and the cleaned point cloud P \ That is

Em{S,P') = maxjmin dpJ (5)

where 6^^ denotes the Euclidean distance between the point 
Pi and a triangle f of surfece S.

According to the distance definition, we use following 
procedure to find the candidate vertices to improve fitting 
accuracy (please see Fig. 6). Firstly, for each pointpwP, 
find the nearest face 丿任 S and calculate the distance value 
dp访 At the same time, the point is assigned as one of the 
corresponding point offi. Secondly, for each face 底 S, find 
the point pj with max distance value in all the corresponding 
points of £ . Then the distance value is saved as the local 
error q of face and the point pj is stored as the target point 
of fj. If there is no corresponding point for 方,the local error 
8j is set to zero. Calculate the average local error s. Finally, 
insert a new vertex into the face 为 if 句 > £ and move the 
new generated vertex to the specific position.

As illustrated in Fig. 7, three situations will occur when 
inserting new vertices. We call them: face subdivision, edge 
cutting and vertex moving, respectively. The choice of splitting 
operation depends on the distance between and its target 
point If the projection of pj onto the face^ is inside the 
triangle fi, then fece subdivision is applied. Otherwise, 
calculated the distance dp>ek between pj to the edges ek Qc = 
a, b, c) of£ and the distance dpyi between 口 to the vertices 
v仰 = a, b, c) of fi. If dp,새: < dp계, the edge cutting is applied, 
otherwise we only move the vertex of£, which is nearest to 
the point pj.

The position of the new generated vertex vz- is calculated 
as follows:

1 k 
当=v”(p 厂 v,)+( 1。一破£3厂1，,.)， (6)

KJ=1

where f is a tension parameter and k is the number of 
adjacent vertices of vz-. The new position of vz- is detennined 
by two fectors: (i) the position of its corresponding point p; 
and (ii) the affection from the adjacent vertices.

5.2. Remeshing
The above naive distance-based updating strategy can 

only generate resultant meshes in low quality. The refinement 
results are a li버e bit bumpy, and long thin triangles are 
appeared because of the fece spilt operations. Hence an 
additional remeshing step is carried out after candidate vertices 
are inserted in each updating cycle. The remeshing approach 
we adopted is a variant implementation of [27]. Briefly 
speaking, this remeshing technique is an iterative procedure. 
In each processing pass, given a taiget length I, a remeshing 
step consists of four consequent operations, namely Operators, 
OperatorC, OperatorV and OperatorT respectively.
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Fig. 7. Insert candidate vertices.

• Operators : For each edge e, if length^ > 4/3 /, insert 
the midpoint of e.

• OperatorC : For each edge e, if length(e) < 4/5 /, 
collapse e to its midpoint.

• OperatorV: For each edge e, flip it if the average valence 
of its four adjacent vertices (in its adjacent triangles) can 
approach nearer to 6.

• OperatorT : For each vertex % re-compute its position 
on the surfece by tangential smoothing.

In our approach, we use dynamic target edge length,

4=샤4—i#=l,2,・.. (7)

with >4 to be a tuning fector at k-th refinement pass fbr mesh 
reconstruction. Let /0 be the average edge length of the 
initial coarse mesh Sq. Note that 品 is generated by the 
marching cube. There are lots of long thin and zigzag 
triangles on SQ. Therefore h is chosen to be slightly longer 
lhan lQ to achieve better mesh quality and smoothing eflfects 
simultaneou아y. In our experience, Ai= 1.2 is appropriate. 
And in the successive several passes, ^is set to be 1.0 until 
the error value is stable. The m^or motivation is based on 
the observation that the distance between refined mesh Mk 
and target data points is quit large in the first several passes. 
Then we turn to choose e [0.7, 1.0) to achieve higher 
mesh resolutions.

One crucial issue in the remeshing algorithm is the 
topology preserving. When 'OperatorC' is ^plied in refinement 
procedure, it may potentially change the genus of shape and 
produce degenerate comectivity. Therefore, an addition 
function for comectivity checking is 再)plied before performing 
the “OpemtorC" in our implementation.

The coupling of mesh refinement and remeshing implies 
a mesh surfece fitting procedure indeed. The mesh refinement 
part takes care of position constraints. While the remeshing 
stq) provides 1he smooftring function to prevent ugfy ^poximated 
meshes. In addition, the sampling resolutions of meshes are 
well controlled by remeshing.

Although the remeshing step may slightly increase the 
迎proximate error mainly due to the “OperatorT'. The trend 
of the whole process will still decrease error E gradually. In 
our approach, anew sur&ce is generated after each refinement 
pass. At last, besides the final reconstructed surfece, we can 
obtain a series of well constructed meshes in difeent resolutions.

6. Implementation and Results

We have performed our method on several challenging 
point cloud data (e.g. Fig. 8, 9,10 and 11). We also scanned 
two models, the warrior (Fig.l) and the rag baby model 
(Fig. 12) for testing tiie robustness of our proposed algorithm 
by using a FastSCAN hand-held laser scanner.

In all our experiments, tiie resolution of depth snapshots

Fig. 8. Happy Buddha.

Fig. 9. Dragon.
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is 800 x 600 to capture thin or flam features in point clouds. 
The confidence map is defined in the cube [-1,1]3 and the 
sampling step is set to be 0.02 unit along each axis.

The statistic data are listed in Table 1. All the experimental 
data were collected on a PC equipped with Dual Intel Xeon 
2.4 GHz CPU processor and 3 GB memory. In lable 1, it 
can be observed that the running time of Phase I mainly 
depend on the number of deptti snapshots due to the unified 
rasterization resolution. This feature enables us to process 
huge data e伍ciently.

In Phase II (cf Table 1), our approach normally consumes 
much longer time for laler several passes, since the resolutions 
of approximating meshes are increase. To overcome this 
problem, a local updating trick can be used in our remeshing 
procedure. That is we only perform remeshing around nearby 
regions where triangles are recently refined. By using this 
implementation trick, the wh이e processing time in our 
experience is nearly half of the global remeshing version. 
But results will be slightly woree than global rplating version 
both in mesh smoothness and topological connectivity. A 
result comparison is demonstrated in Fig. 8.

Our presented results exhibit the abilities of our robust 
reconstruction method. In Figs. 1, 8,9 and 10, models are in 
high shape complexity and fiill of details. These models can 
be recmstructed by using moderately number of depfli sngshots.

Fig. 12. The rag baby model. The upper row shows the scanned 
point clouds viewed from front and left-side, respectively. The 
lower row shows the reconstructed surface.

Meanwhile the final acc니mte outputs are in high quality in 
terms of evenly sampling and near regular connectivity, as 
illustrated in Fig. 9. Therefore tiie outputs of our approach 
can be directly utilized in various computer graphics applications, 
such as differential mesh modeling [30] and point-based 
graphics.

In all our examples, data details are precisely recovered in 
an evolution manner. For example, in Fig. 10, acetabula of 
the octopus are appeared gradually when reconstruction 
resolution is increased. Reconstructing leg ends of the octopus 
and horns of the dragon are not easy for some other methods.

Comparing with stat-of-the-art reconstruction algorithms, 
our algorithm still shows outstanding performance. Fig. 11(a) 
demonstrates a comparison wilhthe Poisson surfece reconstruction 
(PSR) algorithm [19], one of the best volumetric approaches

(a)

Fig. 11. Algorithm comparisons of the Greek data, (a) The left image is the original scanned data. The middle image is our reconstructed 
result, and the right one is obtained by Poisson surface reconstruction, (b) The left model is reconstructed by the tight cocone algorithm. And 
the right one is our reconstruct result.
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Table. 1. Performance statistics

Name
Input Model 

Figure #points
Phase I Phase II Output #trian- 

이 es
Em(P，. SO

#snapshots run(sec) #passes run(sec)
Octopus Fig. 10 149,666 13 11.5 15 425.0 503,084 5.5e-5
Warrior FIg-1 918,257 8 8.9 16 640.2 908,118 5.9e-4
Dragon Fig. 9 437,645 9 9.3 16 632.3 875,968 7.2e-4
Buddha Fig. 8 543,652 10 9.8 14 1008.2 1,225,162 1.8e-4
Greek Fig. 11 102,352 15 17.0 17 290.8 182,300 3.6e-5
Rag baby Fig. 12 215,336 12 10.8 15 340.0 206,614 5.8e-4

developed recently. In this example, we use defeult parameters 
for PSR and no additional normal information are provided. 
It is obvious that our reconstructed result (the middle image 
of Fig. 11(a)) contains more details than [19] (the left image 
of Fig. 11(a)). The major reasons are PSR requires initial 
estimation of surface orientation and it contains a PDE based 
optimization procedure to diflEuse normal deviations. We also 
compared our algorithm with the tight cocone (TC) [12], a 
typical Vbronoi-based approach. As illustrated in Fig. 11(b), 
the result generated by TC (the left image) still contains 
topological failures (below the chin) even die input data are 
quite clean. While our algorithm produces correct result (the 
ri^it image ofFig. 11(b)) die to the visibility-based reconstruction 
strategy.

The terra-cotta warrior (Fig. 1) and the rag baby model 
(Fig. 12) demonstrate tiie ability of data repairing. Tb guarantee 
the result surfece to be manifold, we fixttie holes and discard 
all &ke points during the depth sampling step. In Fig 1, the 
base plat and several insufficient sampled part ofthe warrior are 
well repaired, and umecessaiy parts are discarded. Regarding 
for the rag baby model illustrated in Fig. 13, the imer side 
ofthe stick is unreachable by our hand-held laser scanner.

7. Discussion and Future Work

Inthisp^ei; al^brid approach is presented for reconstructing 
surfeces from unorganized points without knowing surface 
orientation information. Actually, two sampling strategies are 
seamlessly coupled in our approach. In the first phase, 
uniform sampling based on visibility ensures correct surface 
topology and implicitly provides robust surfece orientation 
estimation. User interactions are also able to be conveniently 
performed fbr data repairing in this stage. In the second 
phase, an area-equalizing surface sampling is carried out, 
which is guided by surfece distance measure. Therefore high 
quality mesh surfeces witti elaborate details are well recovered.

Our method is limited in recovering visible parts of a 
closed object, which is identical to the human's perception 
of what a surface is in most cases. As mentioned in Section 
4.1, our sampling principle is to cover all visible parts of 
input data. However, this rule may not work well if we 
merely move and rotate a virtual camera on the bounding 
sphere of a complex model with invisible parts, e.g., a 
망eashell. In this situation, a possible solution is to divide a 
given point cloud into several parts, then to treat them 
separately, and finally combing separated parts.

Several adaptive strategies may be useful to enhance the 
ability of our reconstruction approach. The adaptively sampled 
distance fields [15] can be used instead of the unifomily 
sampling in Phase I. And also, an adaptively remeshing 
method may be adopted according to specific properties of 
the input point clouds, such as sharp features and/or curvature 
measure. This improvement can reduce the number of triangles. 
To achieve even higher reconstruction quality, we tested a 
MLS projection technique for extracting details, which is 
similar to ttie final projection step addressed in [29]. It is 
promising direction to combine local surface fitting for the 
purpose of denoising. In addition, 1he Edge-sharpener technique
[4] can be integrated into the mesh refinement procedure to 
enhance features.
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