• Title/Summary/Keyword: point cloud

Search Result 838, Processing Time 0.022 seconds

Preparation and Properties of Water-based Adhesive Using Gemini Type Nonionic Reactive Surfactants (제미니형 비이온 반응성 계면활성제를 이용한 수성접착제의 제조 및 특성)

  • Shin, Hye-Lin;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.597-605
    • /
    • 2019
  • In order to improve the adhesion of water-based adhesive, gemini type nonionic reactive surfactants were synthesized and applied to water-based adhesives. The surfactants were synthesized by using maleic acid and polyoxyethylene cetyl ether having different length of ethylene oxide and confirmed by FT-IR and $^1H-NMR$. Their appearance was light yellow wax. The cloud point of the compound was more than $78^{\circ}C$. The measured critical micelle concentration (c.m.c) was $1.0{\times}10^{-4}{\sim}7.0{\times}10^{-4}mol/L$ and surface tension at c.m.c was 25.9~32.0 mN/m. As the number of ethylene oxide increased, the emulsifying power was improved. The foaming height of each compound by Ross-Miles method was 1.4~4.5 cm. The synthesized surfactants was then used as an emulsifier in emulsion polymerization of water-based adhesives and its physical properties were evaluated. The solid contents of prepared adhesives was 59%. The average particle size and initial tackiness of the prepared adhesives were 164~297 nm and ball no. of 20~32, respectively. The peel strength was $1.8{\sim}2.1kg_f/mm$. The retention rate of adhesives viscosity was evaluated to 99% during 30 days. Therefore, synthesized gemini type nonionic reactive surfactants are expected to be applied as an emulsifier for the high adhesive force.

Utilization of Unmanned Aerial Scanner for Investigation and Management of Forest Area (산림지역 조사 및 관리를 위한 무인항공 스캐너의 활용)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of Digital Convergence
    • /
    • v.17 no.11
    • /
    • pp.189-194
    • /
    • 2019
  • Forest investigation is the basic data for forest preservation and forest resource development, and periodical data acquisition and management have been performed. However, most of the current forest investigations in Korea are surveys to grasp the current status of forests, and various applications have not been made as geospatial information. In this study, the unmanned aerial scanner was used to acquire and process data in the forest area and to present an efficient forest survey method through analysis of the results. Unmanned aerial scanners can extract ground below vegetation, effectively creating DEM for forest management. It can be used as geospatial information for forest investigation and management by generating accurate topographical data that is impossible in conventional photogrammetry. It can also be used to measure distances between power lines and vegetation or manage transmission lines in forest areas. The accurate vertical distance measurement for vegetation surveys can greatly improve the accuracy of labor measurement and work efficiency compared to conventional methods. In the future, the use of unmanned aerial scanners will improve the data acquisition efficiency in forest areas, and will contribute to improved accuracy and economic feasibility compared to conventional methods.

Characteristic and Accuracy Analysis of Digital Elevation Data for 3D Spatial Modeling (3차원 공간 모델링을 위한 수치고도자료의 특징 및 정확도 분석)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.744-749
    • /
    • 2018
  • Informatization and visualization technology for real space is a key technology for construction of geospatial information. Three-dimensional (3D) modeling is a method of constructing geospatial information from data measured by various methods. The 3D laser scanner has been mainly used as a method for acquiring digital elevation data. On the other hand, the unmanned aerial vehicle (UAV), which has been attracting attention as a promising technology of the fourth industrial revolution, has been evaluated as a technology for obtaining fast geospatial information, and various studies are being carried out. However, there is a lack of evaluation on the quantitative work efficiency and data accuracy of the data construction technology for 3D geospatial modeling. In this study, various analyses were carried out on the characteristics, work processes, and accuracy of point cloud data acquired by a 3D laser scanner and an unmanned aerial vehicle. The 3D laser scanner and UAV were used to generate digital elevation data of the study area, and the characteristics were analyzed. Through evaluation of the accuracy, it was confirmed that digital elevation data from a 3D laser scanner and UAV show accuracy within a 10 cm maximum, and it is suggested that it can be used for spatial information construction. In the future, collecting 3D elevation data from a 3D laser scanner and UAV is expected to be utilized as an efficient geospatial information-construction method.

A Study on Pipe Model Registration for Augmented Reality Based O&M Environment Improving (증강현실 기반의 O&M 환경 개선을 위한 배관 모델 정합에 관한 연구)

  • Lee, Won-Hyuk;Lee, Kyung-Ho;Lee, Jae-Joon;Nam, Byeong-Wook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.191-197
    • /
    • 2019
  • As the shipbuilding and offshore plant industries grow larger and more complex, their maintenance and inspection systems become more important. Recently, maintenance and inspection systems based on augmented reality have been attracting much attention for improving worker's understanding of work and efficiency, but it is often difficult to work with because accurate matching between the augmented model and reality information is not. To solve this problem, marker based AR technology is used to attach a specific image to the model. However, the markers get damaged due to the characteristic of the shipbuilding and offshore plant industry, and the camera needs to be able to detect the entire marker clearly, and thus requires sufficient space to exist between the operator. In order to overcome the limitations of the existing AR system, in this study, a markerless AR was adopted to accurately recognize the actual model of the pipe system that occupies the most processes in the shipbuilding and offshore plant industries. The matching methodology. Through this system, it is expected that the twist phenomenon of the augmented model according to the attitude of the real worker and the limited environment can be improved.

Estimation of the Dimensions of Horticultural Products and the Mean Plant Height of Plug Seedlings Using Three-Dimensional Images (3차원 영상을 이용한 원예산물의 크기와 플러그묘의 평균초장 추정)

  • Jang, Dong Hwa;Kim, Hyeon Tae;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.358-365
    • /
    • 2019
  • This study was conducted to estimate the dimensions of horticultural products and the mean plant height of plug seedlings using three-dimensional (3D) images. Two types of camera, a ToF camera and a stereo-vision camera, were used to acquire 3D images for horticultural products and plug seedlings. The errors calculated from the ToF images for dimensions of horticultural products and mean height of plug seedlings were lower than those predicted from stereo-vision images. A new indicator was defined for determining the mean plant height of plug seedlings. Except for watermelon with tap, the errors of circumference and height of horticultural products were 0.0-3.0% and 0.0-4.7%, respectively. Also, the error of mean plant height for plug seedlings was 0.0-5.5%. The results revealed that 3D images can be utilized to estimate accurately the dimensions of horticultural products and the plant height of plug seedlings. Moreover, our method is potentially applicable for segmenting objects and for removing outliers from the point cloud data based on the 3D images of horticultural crops.

Comparison of Open Source based Algorithms and Filtering Methods for UAS Image Processing (오픈소스 기반 UAS 영상 재현 알고리즘 및 필터링 기법 비교)

  • Kim, Tae Hee;Lee, Yong Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.155-168
    • /
    • 2020
  • Open source is a key growth engine of the 4th industrial revolution, and the continuous development and use of various algorithms for image processing is expected. The purpose of this study is to examine the effectiveness of the UAS image processing open source based algorithm by comparing and analyzing the water reproduction and moving object filtering function and the time required for data processing in 3D reproduction. Five matching algorithms were compared based on recall and processing speed through the 'ANN-Benchmarks' program, and HNSW (Hierarchical Navigable Small World) matching algorithm was judged to be the best. Based on this, 108 algorithms for image processing were constructed by combining each methods of triangulation, point cloud data densification, and surface generation. In addition, the 3D reproduction and data processing time of 108 algorithms for image processing were studied for UAS (Unmanned Aerial System) images of a park adjacent to the sea, and compared and analyzed with the commercial image processing software 'Pix4D Mapper'. As a result of the study, the algorithms that are good in terms of reproducing water and filtering functions of moving objects during 3D reproduction were specified, respectively, and the algorithm with the lowest required time was selected, and the effectiveness of the algorithm was verified by comparing it with the result of 'Pix4D Mapper'.

Development of LiDAR-Based MRM Algorithm for LKS System (LKS 시스템을 위한 라이다 기반 MRM 알고리즘 개발)

  • Son, Weon Il;Oh, Tae Young;Park, Kihong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.174-192
    • /
    • 2021
  • The LIDAR sensor, which provides higher cognitive performance than cameras and radar, is difficult to apply to ADAS or autonomous driving because of its high price. On the other hand, as the price is decreasing rapidly, expectations are rising to improve existing autonomous driving functions by taking advantage of the LIDAR sensor. In level 3 autonomous vehicles, when a dangerous situation in the cognitive module occurs due to a sensor defect or sensor limit, the driver must take control of the vehicle for manual driving. If the driver does not respond to the request, the system must automatically kick in and implement a minimum risk maneuver to maintain the risk within a tolerable level. In this study, based on this background, a LIDAR-based LKS MRM algorithm was developed for the case when the normal operation of LKS was not possible due to troubles in the cognitive system. From point cloud data collected by LIDAR, the algorithm generates the trajectory of the vehicle in front through object clustering and converts it to the target waypoints of its own. Hence, if the camera-based LKS is not operating normally, LIDAR-based path tracking control is performed as MRM. The HAZOP method was used to identify the risk sources in the LKS cognitive systems. B, and based on this, test scenarios were derived and used in the validation process by simulation. The simulation results indicated that the LIDAR-based LKS MRM algorithm of this study prevents lane departure in dangerous situations caused by various problems or difficulties in the LKS cognitive systems and could prevent possible traffic accidents.

Topic Modeling-Based Domestic and Foreign Public Data Research Trends Comparative Analysis (토픽 모델링 기반의 국내외 공공데이터 연구 동향 비교 분석)

  • Park, Dae-Yeong;Kim, Deok-Hyeon;Kim, Keun-Wook
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.1-12
    • /
    • 2021
  • With the recent 4th Industrial Revolution, the growth and value of big data are continuously increasing, and the government is also actively making efforts to open and utilize public data. However, the situation still does not reach the level of demand for public data use by citizens, At this point, it is necessary to identify research trends in the public data field and seek directions for development. In this study, in order to understand the research trends related to public data, the analysis was performed using topic modeling, which is mainly used in text mining techniques. To this end, we collected papers containing keywords of 'Public data' among domestic and foreign research papers (1,437 domestically, 9,607 overseas) and performed topic modeling based on the LDA algorithm, and compared domestic and foreign public data research trends. After analysis, policy implications were presented. Looking at the time series by topic, research in the fields of 'personal information protection', 'public data management', and 'urban environment' has increased in Korea. Overseas, it was confirmed that research in the fields of 'urban policy', 'cell biology', 'deep learning', and 'cloud·security' is active.

Development of Multi-Camera based Mobile Mapping System for HD Map Production (정밀지도 구축을 위한 다중카메라기반 모바일매핑시스템 개발)

  • Hong, Ju Seok;Shin, Jin Soo;Shin, Dae Man
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.587-598
    • /
    • 2021
  • This study aims to develop a multi-camera based MMS (Mobile Mapping System) technology for building a HD (High Definition) map for autonomous driving and for quick update. To replace expensive lidar sensors and reduce long processing times, we intend to develop a low-cost and efficient MMS by applying multiple cameras and real-time data pre-processing. To this end, multi-camera storage technology development, multi-camera time synchronization technology development, and MMS prototype development were performed. We developed a storage module for real-time JPG compression of high-speed images acquired from multiple cameras, and developed an event signal and GNSS (Global Navigation Satellite System) time server-based synchronization method to record the exposure time multiple images taken in real time. And based on the requirements of each sector, MMS was designed and prototypes were produced. Finally, to verify the performance of the manufactured multi-camera-based MMS, data were acquired from an actual 1,000 km road and quantitative evaluation was performed. As a result of the evaluation, the time synchronization performance was less than 1/1000 second, and the position accuracy of the point cloud obtained through SFM (Structure from Motion) image processing was around 5 cm. Through the evaluation results, it was found that the multi-camera based MMS technology developed in this study showed the performance that satisfies the criteria for building a HD map.

Development of Registration Post-Processing Technology to Homogenize the Density of the Scan Data of Earthwork Sites (토공현장 스캔데이터 밀도 균일화를 위한 정합 후처리 기술 개발)

  • Kim, Yonggun;Park, Suyeul;Kim, Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.689-699
    • /
    • 2022
  • Recently, high productivity capabilities have been improved due to the application of advanced technologies in various industries, but in the construction industry, productivity improvements have been relatively low. Research on advanced technology for the construction industry is being conducted quickly to overcome the current low productivity. Among advanced technologies, 3D scan technology is widely used for creating 3D digital terrain models at construction sites. In particular, the 3D digital terrain model provides basic data for construction automation processes, such as earthwork machine guidance and control. The quality of the 3D digital terrain model has a lot of influence not only on the performance and acquisition environment of the 3D scanner, but also on the denoising, registration and merging process, which is a preprocessing process for creating a 3D digital terrain model after acquiring terrain scan data. Therefore, it is necessary to improve the terrain scan data processing performance. This study seeks to solve the problem of density inhomogeneity in terrain scan data that arises during the pre-processing step. The study suggests a 'pixel-based point cloud comparison algorithm' and verifies the performance of the algorithm using terrain scan data obtained at an actual earthwork site.