• Title/Summary/Keyword: po

Search Result 4,227, Processing Time 0.038 seconds

Electrochemical Properties of LiMPO4(M = Fe, Mn) Synthesized by Sol-Gel Method (졸-겔법에 의해 제조된 LiMPO4(M = Fe, Mn) 양극 활물질의 전기화학적 특성)

  • Kim, Jae-Kwang;Baek, Dong-Ho;Shin, Yong-Jo;Ahn, Jou-Hyeon;Seo, Yang-Gon;Kim, Chi-Su;Yoon, Seok-Jun;Cho, Myung-Hun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.120-124
    • /
    • 2008
  • Carbon-coated $LiFePO_4$ and $LiMn_{0.4}Fe_{0.6}PO_4$ cathode materials for lithium batteries were synthesized by a sol-gel method. X-ray diffraction and scanning electron microscopy data showed that the cathode materials are pure crystalline and are surrounded by porous carbon. The initial discharge capacities of $LiFePO_4$ and $LiMn_{0.4}Fe_{0.6}PO_4$ with the liquid electrolyte of 1M $LiPF_6$ in EC/DMC are 132 mAh/g and 145 mAh/g, respectively, at current density of 0.1 C-rate. $LiFePO_4$ and $LiMn_{0.4}Fe_{0.6}PO_4$ with an electrospun polymer-based electrolyte exhibit initial discharge capacities of 114 and 130 mAh/g at 0.1 C-rate at room temperature, respectively.

A Modified Pretreatment with Deproteinization for Resin Infiltration in Early Childhood Caries (유아기우식증 치료를 위한 레진침투법에서 제단백제재의 사용)

  • Nam, Siyeon;Shin, Jonghyun;Jeong, Taesung;Kim, Shin;Kim, Jiyeon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.3
    • /
    • pp.290-298
    • /
    • 2018
  • This study aimed to evaluate surface morphology and resin tag penetration of resin infiltration into primary anterior teeth after enamel deproteinization with sodium hypochlorite (NaOCl) prior to phosphoric acid ($H_3PO_4$) etching. Ninety primary anterior teeth with non-cavitated caries lesion were devided five groups according to enamel pretreatment as follows, group I-15% hydrochloric acid (HCl) 2min. ; group II-5.25% NaOCl 1min., 35% $H_3PO_4$ 1min. ; group III-5.25% NaOCl 2min., 35% $H_3PO_4$ 1min. ; group IV-5.25% NaOCl 1min., 35% $H_3PO_4$ 2min. ; group V-5.25% NaOCl 2min., 35% $H_3PO_4$ 2min. Fifteen teeth were examined etched surface structure using field emission-scanning electron microscope. Seventy five teeth were infiltrated with resin, maximum penetration depth and percentage penetration were analysed using dual fluorescence confocal microscopy. As the application time of NaOCl increased, ratio of enamel type I, II were increased. Percentage penetration (PP) was higher in group V than group II, III (p < 0.05). PP of group IV, V did not show any differences. Non-cavitated caries of primary anterior teeth can be treated with resin infiltration. Enamel deproteinization with NaOCl prior to 35% $H_3PO_4$ etching could be an alternative of 15% HCl etching in resin infiltration.

Changes in Blood pH, $Pco_2$ and $Po_2$ During Passive Tilt (체위 변화시의 혈액 pH, $Pco_2$$Po_2$의 변화)

  • Jun, Sang-Yun;Chae, E-Up
    • The Korean Journal of Physiology
    • /
    • v.12 no.1_2
    • /
    • pp.35-40
    • /
    • 1978
  • To evaluate orthostatic brain hypoxia from the passive tilt, anesthetized dogs were tilted from supine to $90^{\circ}C$ upright and $90^{\circ}C$ head down position. Blood pH, $Pco_2$ and $Po_2$ changes during tilt were measured on 8 dogs. Respiratory rate was decreased in upright position and increased in head down position comparing to that in rte horizontal position. pH in arterial blood was increased in upright position and decreased in venous blood comparing to that in the horizontal position. No significant changes were found in the head down position. $Pco_2$ of arterial and venous blood was decreased both in upright and head down. position A significant decrease was found in the head down position. $Po_2$ in arterial blood was increased both in the upright and head down position. However, it was decreased in the venous blood. The cause of increased $Po_2$ in arterial blood seemed to do due to hyperventilation and the cause of decreased $Po_2$ in venous blood was thought to be due to increased $O_2$ consumption of animals during the tilt.

  • PDF

Temperature Dependent Optical Performance of the NaSr(PO3)3:Eu2+ Blue Phosphors (NaSr(PO3)3:Eu2+ 청색 형광체의 온도 의존적 형광 특성)

  • Yoon, Chang yong;Lee, Sang ho
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.3
    • /
    • pp.391-399
    • /
    • 2021
  • Eu2+ doped polyphosphate NaSr(PO3)3 blue-emitting phosphors were synthesized by the conventional solid state method in a reductive atmosphere. The phase formation of NaSr(PO3)3 phosphors were characterized by using the X-ray powder diffraction (XRD) measurement. The photoluminescence emission and excitation spectra of the NaSr(PO3)3:Eu2+ phosphor, and decay curves were measured. Under the near-UV excitation, the phosphor exhibits a band emission around 420 nm assigned to the 4f65d→f7(8S7/2) transition of Eu2+. The temperature dependent emission spectra and decay curves were measured to elevate the thermal properties of the Eu2+ doped phosphors. The as-prepared NaSr(PO3)3:Eu2+ phosphors show a strong temperature dependent performance, which can serve as a promising temperature sensor.

Synthesis and characterization of Li3V2(PO4)3/C composite cathode materials using direct co-precipitation method (직접 공침법을 이용한 Li3V2(PO4)3/C 복합체 양극 활물질 합성 및 특성)

  • Jeong-Hwan Song
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.167-173
    • /
    • 2023
  • Li3V2(PO4)3 and Li3V2(PO4)3/C composite with single phase monoclinic structure for the cathode materials are successfully synthesized by direct co-precipitation method using N2H4·H2O as the reducing agent and alginic acid as the carbon source, and their electrochemical properties were compared. The particles with approximately 1~2 ㎛ size and the uniform spherical-like morphology of the narrow particle size distribution were obtained. In addition, the residual carbon can also improve the electrical conductivity. The Li3V2(PO4)3/C composite has improved initial specific discharge capacity and excellent cycle characteristics to maintain capacity stably than Li3V2(PO4)3. The results indicate that the reducing agent and carbon composite can affect the good crystallinity and electrochemical performance of the cathode materials.

Influence of Ga Content on the Ionic Conductivity of Li1+XGaXTi2-X(PO4)3 Solid-State Electrolyte Synthesized by the Sol-Gel Method

  • Seong-Jin Cho;Jeong-Hwan Song
    • Korean Journal of Materials Research
    • /
    • v.34 no.4
    • /
    • pp.185-193
    • /
    • 2024
  • In this study, NASICON-type Li1+XGaXTi2-X(PO4)3 (x = 0.1, 0.3 and 0.4) solid-state electrolytes for all-solid-state batteries were synthesized through the sol-gel method. In addition, the influence on the ion conductivity of solid-state electrolytes when partially substituted for Ti4+ (0.61Å) site to Ga3+ (0.62Å) of trivalent cations was investigated. The obtained precursor was heat treated at 450 ℃, and a single crystalline phase of Li1+XGaXTi2-X(PO4)3 systems was obtained at a calcination temperature above 650 ℃. Additionally, the calcinated powders were pelletized and sintered at temperatures from 800 ℃ to 1,000 ℃ at 100 ℃ intervals. The synthesized powder and sintered bodies of Li1+XGaXTi2-X(PO4)3 were characterized using TG-DTA, XRD, XPS and FE-SEM. The ionic conduction properties as solid-state electrolytes were investigated by AC impedance. As a result, Li1+XGaXTi2-X(PO4)3 was successfully produced in all cases. However, a GaPO4 impurity was formed due to the high sintering temperatures and high Ga content. The crystallinity of Li1+XGaXTi2-X(PO4)3 increased with the sintering temperature as evidenced by FE-SEM observations, which demonstrated that the edges of the larger cube-shaped grains become sharper with increases in the sintering temperature. In samples with high sintering temperatures at 1,000 ℃ and high Ga content above 0.3, coarsening of grains occurred. This resulted in the formation of many grain boundaries, leading to low sinterability. These two factors, the impurity and grain boundary, have an enormous impact on the properties of Li1+XGaXTi2-X(PO4)3. The Li1.3Ga0.3Ti1.7(PO4)3 pellet sintered at 900 ℃ was denser than those sintered at other conditions, showing the highest total ion conductivity of 7.66 × 10-5 S/cm at room temperature. The total activation energy of Li-ion transport for the Li1.3Ga0.3Ti1.7(PO4)3 solid-state electrolyte was estimated to be as low as 0.36 eV. Although the Li1+XGaXTi2-X(PO4)3 sintered at 1,000 ℃ had a relatively high apparent density, it had less total ionic conductivity due to an increase in the grain-boundary resistance with coarse grains.

PoMEN based Latent One-Class SVM (PoMEN 기반의 Latent One-Class SVM)

  • Lee, Changki
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.8-11
    • /
    • 2012
  • One-class SVM은 데이터가 존재하는 영역을 추출하고, 이 영역을 서포트 벡터로 표현하며 표현된 영역 밖의 데이터들은 아웃라이어(outlier)로 간주된다. 본 논문에서는 데이터 포인트마다 숨겨진 변수(hidden variable) 혹은 토픽이 있다고 가정하고, 이를 반영하기 위해 PoMEN에 기반한 Latent One-class SVM을 제안한다. 실험결과 Latent One-class SVM이 대부분의 구간에서 One-class SVM 보다 성능이 높았으며, 특히 높은 정확율을 요구하는 경우에 더욱 효과적임을 알 수 있었다.

  • PDF

Importance of Colloidal 210Pb and 210Po in Groundwater of Subterranean Estuary (해저 하구의 지하수 중 콜로이드 상 210Pb과 210Po의 중요성)

  • Kim, Tae-Hoon;Kim, Intae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.2
    • /
    • pp.125-130
    • /
    • 2014
  • In order to evaluate the distributions of colloidal $^{210}Pb$ (half life = 22.2 years) and $^{210}Po$ (half life = 138 days) in subterranean estuary, we have measured $^{210}Pb$ and $^{210}Po$, for the first time, in the total dissolved (< $0.45{\mu}m$), true dissolved (<10 kDa), and colloidal ($10kDa-0.45{\mu}m$) phases in subterranean estuary of Hampyeong Bay in July 2010 and of Jeju Island in January 2011. The $^{210}Pb$ and $^{210}Po$ activities in groundwater were in the ranges of $0.21-2.52mBqL^{-1}$ and $0.12-2.07mBqL^{-1}$ for true dissolved phase and $0.10-1.71mBqL^{-1}$ and $0.03-0.97mBqL^{-1}$ for colloidal phase, respectively. The proportions of the colloidal phase to the total dissolved phase were $40{\pm}5%$ for $^{210}Pb$ and $28{\pm}5%$ for $^{210}Po$ in groundwater. This result indicates that colloids may play an important role in transporting trace elements through subterranean estuary into the coastal ocean.

7Li MAS NMR studies of Li4P2O7 and LiFePO4 materials (LiFePO4와 Li4P2O77Li MAS NMR 특성 연구)

  • Han, Doug-Young;Park, Nam-Sin;Lee, Sang-Hyuk;Lee, Hak-Man;Kim, Chang-Sam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • [ $^7Li$ ]Magic Angle Spinning (MAS) NMR spectroscopy has been used to study the lithium local environments in $Li_4P_2O_7$ and$LiFePO_4$ materials. The purpose of this study was to know the structure of the solid electrolyte interphase (SEI) in lithium ion cells composed of $LiFePO_4$ as cathode material. $Li_4P_2O_7$ and $LiFePO_4$ were prepared by a solid-state reaction. The $^7Li$ MAS NMR experiments were carried out at variable temperatures in order to observe the local structure changes at the temperatures in $Li_4P_2O_7$ system. The $^7Li$ MAS NMR spectra of in $Li_4P_2O_7$ indicate that the lithium local environments in $Li_4P_2O_7$ were not changed in the temperature range between $27^{\circ}C$ and $97^{\circ}C$ Through this work, we confirmed that the small amount of $Li_4P_2O_7$ less than 5.0 wt% in $LiFePO_4$ could be clearly measured by the $^7Li$ MAS NMR spectroscopy at high spinning rate over than 11 kHz.

Preparation of AgCl/Ag3PO4/Diatomite Composite by Microemulsion Method for Rapid Photo-Degradation of Rhodamine B with Stability under Visible Light

  • Zhu, Hai-Tao;Ren, Qi-Fang;Jin, Zhen;Ding, Yi;Liu, Xin-Yu;Ni, Xi-Hui;Han, Meng-Li;Ma, Shi-Yu;Ye, Qing;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.383-392
    • /
    • 2020
  • In this paper, AgCl/Ag3PO4/diatomite photocatalyst is successfully synthesized by microemulsion method and anion in situ substitution method. X-ray diffraction (XRD), photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and ultraviolet-visible spectroscopy (UV-Vis) are used to study the structural and physicochemical characteristics of the AgCl/Ag3PO4/diatomite composite. Using rhodamine B (RhB) as a simulated pollutant, the photocatalytic activity and stability of the AgCl/Ag3PO4/diatomite composite under visible light are evaluated. In the AgCl/Ag3PO4/diatomite visible light system, RhB is nearly 100 % degraded within 15 minutes. And, after five cycles of operation, the photocatalytic activity of AgCl/Ag3PO4/diatomite remains at 95 % of the original level, much higher than that of pure Ag3PO4 (40 %). In addition, the mechanism of enhanced catalytic performance is discussed. The high photocatalytic performance of AgCl/Ag3PO4/diatomite composites can be attributed to the synergistic effect of Ag3PO4, diatomite and AgCl nanoparticles. Free radical trapping experiments are used to show that holes and oxygen are the main active species. This material can quickly react with dye molecules adsorbed on the surface of diatomite to degrade RhB dye to CO2 and H2O. Even more remarkably, AgCl/Ag3PO4/diatomite can maintain above 95 % photo-degradation activity after five cycles.