DOI QR코드

DOI QR Code

Influence of Ga Content on the Ionic Conductivity of Li1+XGaXTi2-X(PO4)3 Solid-State Electrolyte Synthesized by the Sol-Gel Method

  • Seong-Jin Cho (Department of Materials Engineering, Graduate School of Pai Chai University) ;
  • Jeong-Hwan Song (Department of Materials Science & Engineering, Pai Chai University)
  • Received : 2024.03.11
  • Accepted : 2024.04.16
  • Published : 2024.04.27

Abstract

In this study, NASICON-type Li1+XGaXTi2-X(PO4)3 (x = 0.1, 0.3 and 0.4) solid-state electrolytes for all-solid-state batteries were synthesized through the sol-gel method. In addition, the influence on the ion conductivity of solid-state electrolytes when partially substituted for Ti4+ (0.61Å) site to Ga3+ (0.62Å) of trivalent cations was investigated. The obtained precursor was heat treated at 450 ℃, and a single crystalline phase of Li1+XGaXTi2-X(PO4)3 systems was obtained at a calcination temperature above 650 ℃. Additionally, the calcinated powders were pelletized and sintered at temperatures from 800 ℃ to 1,000 ℃ at 100 ℃ intervals. The synthesized powder and sintered bodies of Li1+XGaXTi2-X(PO4)3 were characterized using TG-DTA, XRD, XPS and FE-SEM. The ionic conduction properties as solid-state electrolytes were investigated by AC impedance. As a result, Li1+XGaXTi2-X(PO4)3 was successfully produced in all cases. However, a GaPO4 impurity was formed due to the high sintering temperatures and high Ga content. The crystallinity of Li1+XGaXTi2-X(PO4)3 increased with the sintering temperature as evidenced by FE-SEM observations, which demonstrated that the edges of the larger cube-shaped grains become sharper with increases in the sintering temperature. In samples with high sintering temperatures at 1,000 ℃ and high Ga content above 0.3, coarsening of grains occurred. This resulted in the formation of many grain boundaries, leading to low sinterability. These two factors, the impurity and grain boundary, have an enormous impact on the properties of Li1+XGaXTi2-X(PO4)3. The Li1.3Ga0.3Ti1.7(PO4)3 pellet sintered at 900 ℃ was denser than those sintered at other conditions, showing the highest total ion conductivity of 7.66 × 10-5 S/cm at room temperature. The total activation energy of Li-ion transport for the Li1.3Ga0.3Ti1.7(PO4)3 solid-state electrolyte was estimated to be as low as 0.36 eV. Although the Li1+XGaXTi2-X(PO4)3 sintered at 1,000 ℃ had a relatively high apparent density, it had less total ionic conductivity due to an increase in the grain-boundary resistance with coarse grains.

Keywords

Acknowledgement

This work was supported by the Pai Chai University research grant in 2022 (No. 2022A0235).

References

  1. K. M. Kim, D. O. Shin and Y. G. Lee, Electrochim. Acta, 176, 1364 (2015).
  2. H. Chung and B. Kang, Solid State Ionics, 263, 125 (2014). https://doi.org/10.1016/j.ssi.2014.05.016
  3. J. Janek and W. G. Zeier, Nat. Energy, 1, 16141 (2016).
  4. Y. T. Li, W. D. Zhou, S. Xin, S. Li, J. L. Zhu, X. J. Lu, Z. M. Cui, Q. X. Jia, J. S. Zhou, Y. S. Zhao and J. B. Goodenough, Angew. Chem., Int. Ed., 55, 9965 (2016).
  5. J. C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano and Y. Shao-Horn, Chem. Rev., 116, 140 (2016).
  6. A. Hayashi, K. Noi, A. Sakuda and M. Tatsumisago, Nat. Commun., 3, 856 (2012).
  7. G. Sahu, Z. Lin, J. C. Li, Z. C. Liu, N. Dudney and C. D. Liang, Energy Environ. Sci., 7, 1053 (2014).
  8. Zhu, J. Zhao, Y. Xiang, M. Lin, H. Wang, B. Zheng, H. He, Q. Wu, J. Y. Huang and Y. Yang, Chem. Mater., 32, 4998 (2020).
  9. J. B. Goodenough, H. Y. P. Hong and J. A. Kafalas, Mater. Res. Bull., 11, 203 (1976).
  10. X. Y. Yao, B. X. Huang, J. Y. Yin, G. Peng, Z. Huang, C. Gao, D. Liu and X. X. Xu, Chin. Phys. B, 25, 018802 (2016).
  11. K. Kwatek and J. L. Nowinski, Solid State Ionics, 302, 54 (2017). https://doi.org/10.1016/j.ssi.2016.11.020
  12. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka and G.-y. Adachi, Solid State Ionics, 40/41, 38 (1990).
  13. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka and G. Adachi, J. Electrochem. Soc., 137, 1023 (1990).
  14. G. X. Wang, D. H. Bradhurst, S. X. Dou and H. K. Liu, J. Power Sources, 124, 231 (2003).
  15. M. Kotobuki and M. Koishi, Ceram. Int., 39, 4645 (2013).
  16. E. C. Bucharsky, K. G. Schell, A. Hintennach and M. J. Hoffmann, Solid State Ionics, 274, 77 (2015).
  17. R. DeWees and H. Wang, ChemSusChem, 12, 3713 (2019).
  18. X. Xu, Z. Wen, J. Wu and X. Yang, Solid State Ionics, 178, 29 (2007).
  19. B. Yang, X. Li, H. Guo, Z. Wang and W. Xiao, J. Alloys Compd., 643, 181 (2015).
  20. M. K. Rao, K. V. Babu, V. Veeraiah and K. Samatha, J. Asian Ceram. Soc., 6, 109 (2018).
  21. M. R. Ghaani, A. M. Mohtasebi, R. Tajeri and P. Marashi, Batteries, 6, 48 (2020).
  22. C. R. Mariappan, C. Galven, M. P. Crosnier-Lopez, F. Le Berre and O. Bohnke, J. Solid State Chem., 179, 450 (2006).
  23. Z. Zhang, L. Hu, H. Tao and J. Ren, J. Power Sources, 442, 227169 (2019).
  24. D. H. Kothari and D. K. Kanchan, Ionics, 21, 1253 (2015).
  25. M. A. Islam, M. Z. Rahaman, M. M. Hasan and A. K. M. A. Hossain, Heliyon, 5, e01199 (2019).
  26. Y. Tian, Y. Zhou, Y. Liu, C. Zhao, W. Wang and Y. Zhou, Solid State Ionics, 354, 115407 (2020). https://doi.org/10.1016/j.ssi.2020.115407
  27. K. Arbi, M. G. Lazarraga, D. B. H. Chehimi, M. Ayadi-Trabelsi and J. M. Rojo, J. Sanz, Chem. Mater., 16, 255 (2004).
  28. F. Ma, E. Zhao, S. Zhu, W. Yan, D. Sun, Y. Jin and C. Nan, Solid State Ionics, 295, 7 (2016).
  29. E. Zhao, F. Ma, Y. Jin and K. Kanamura, J. Alloys Compd., 680, 646 (2016).