• Title/Summary/Keyword: platelet aggregation inhibitor

Search Result 44, Processing Time 0.036 seconds

Antiplatelet Activity of Thujopsis dolabrata var. hondai-Derived Component Against Platelet Aggregation

  • SON DONG JU;PARK YOUNG HYUN;KIM YOUNG MI;CHUNG NAM HYUN;LEE HOI SEON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.425-427
    • /
    • 2005
  • The steam distillate obtained from Thujopsis dolabrata var. hondai sawdust was fractionated by centrifugal thin-film evaporation, and the fractions were then investigated for antiplatelet activity using washed rabbit platelets. The biologically active constituent of T. dolabrata var. hondai sawdust was isolated by silica gel column and HPLC chromatographies and characterized as carvacrol by various spectral analyses. Carvacrol inhibited platelet aggregation induced by collagen, arachidonic acid, and platelet activating factor with IC$_{50}$ values of 12.6, 2.5, and 385.3 $\mu$M, respectively. However, carvacrol had no effect on thrombin, calcium ionophore A23l87, or phorbol l2-myristate l3-acetate induced platelet aggregation. Carvacrol was a much more potent inhibitor, as antiplatelet agents, compared with aspirin. These results suggest that carvacrol isolated from T. dolabrata var. hondai sawdust may be useful as a lead compound for inhibiting arachidonic acid-induced platelet aggregation.

Spinach Saponin-Enriched Fraction Inhibits Platelet Aggregation in cAMP- and cGMP-Dependent Manner by Decreasing TXA2 Production and Blood Coagulation

  • Cho, Hyun-Jeong;Choi, Sun-A;Kim, Chun-Gyu;Jung, Tae-Sung;Hong, Jeong-Hwa;Rhee, Man-Hee;Park, Hye-Jin;Park, Hwa-Jin
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.218-223
    • /
    • 2011
  • In this study, we investigated the effect of spinach saponin-enriched fraction (SSEF) on collagen (10 ${\mu}g/ml$)-stimulated platelet aggregation. SSEF inhibited collagen-induced platelet aggregation, and which was involved in the inhibition of thromboxane $A_2$ ($TXA_2$) production, an intracellular $Ca^{2+}$-agonist as an aggregation-inducing autacoidal molecule. In addition, SSEF significantly increased the formation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), intracellular $Ca^{2+}$-antagonists as aggregation-inhibiting molecules, in collagen-stimulated platelets. These results suggest that SSEF might inhibit $Ca^{2+}$-elevation and $TXA_2$ formation by increasing the production of $Ca^{2+}$-antagonistic molecules cAMP and cGMP. These mean that SSEF is a potent inhibitor of collagen-stimulated platelet aggregation. On the other hand, prothrombin time (PT) and activated partial thromboplastin time (APTT) were potently prolonged by SSEF. These findings suggest that SSEF prolongs the internal time between the conversion of fibrinogen to fibrin. Accordingly, our data demonstrate that SSEF may be a crucial tool for a negative regulator during platelet activation and blood coagulation on thrombotic diseases.

Detection of Platelet Aggregation Inhibitors and Fibrinolytic Substances from Mushrooms (버섯류로부터 혈소판 응집억제물질과 혈전용해물질의 탐색)

  • Park, Jeong-Sik;Hyun, Kwang-Wook;Seo, Seung-Bo;Cho, Soo-Muk;Yoo, Chang-Hyun;Lee, Jong-Soo
    • The Korean Journal of Mycology
    • /
    • v.31 no.2
    • /
    • pp.114-116
    • /
    • 2003
  • Platelet aggregation inhibitory and fibrinolytic activities of water and ethanol extracts from mushrooms were studied. The highest platelet aggregation inhibitory activity was 81.2% in the ethanol extract from fruiting body of Inonotus obliquus ASI 74006 and also were high in the ethanol extract from fruiting bodies of Fomitella fraxinea. The ethanol extract from the mycelia of Agaricus blazei Murill. ASI 1174 showed the strongest fibrinolytic activity as 9.6 unit. However fibrinolytic activities of other mushrooms were low or negligible.

LB30057 Inhibits Platelet Aggregation and Vascular Relaxation Induced by Thrombin

  • Jung, Byoung-In;Kang, a-Kyu-Tae;Bae, Ok-Nam;Lee, Moo-Yeol;Chung, Seung-Min;Lee, Sang-Koo;Kim, In-Chul;Chung, Jin-Ho
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.879-884
    • /
    • 2002
  • Previous study showed that an amidrazonophenylalanine derivative, LB30057, which has high water solubility, inhibited the catalytic activity of thrombin potently by interaction with the active site of thrombin. In the current investigation, we examined whether LB30057 inhibited platelet aggregation and vascular relaxation induced by thrombin. Treatment with LB30057 to plateletrich plasma (PRP) isolated from human blood resulted in a concentration-dependent inhibition of thrombin-induced aggregation. Values for $IC_{50}$ and $IC_{100}$ were $54{\pm}4$ nM and $96{\pm}3$ nM, respectively. This inhibition was agonist (thrombin) specific, since $IC_{50}$ values for collagen and ADP were \much greater than those for thrombin. In addition, concentration-dependent inhibitory effects were observed on the serotonin secretion induced by thrombin in PRP. Consistent with these findings, thrombin-induced increase in cytosolic calcium levels was inhibited in a concentration-dependent manner. When LB30057 was treated with aortic rings isolated from rats, LB30057 resulted in a concentration-dependent inhibition of thrombin-induced vascular relaxation. All these results suggest that LB30057 is a potent inhibitor of platelet aggregation and blood vessel relaxation induced by thrombin.

Platelet Anti-Aggregating Plant Materials

  • YunChoi, Hye-Sook;Kim, Jae-Hoon;Kim, Sun-Ok;Lee, Jong-Ran
    • Korean Journal of Pharmacognosy
    • /
    • v.17 no.2
    • /
    • pp.161-167
    • /
    • 1986
  • The smear method developed by Velaskar and Chitre was modified to allow the screening of plant extracts and/or fractions for platelet anti-aggregating activity. The modified smear method was also found suitable for massive screening of pure compounds. Sample fractions prepared from various plant extracts were examined for their effects against ADP, arachidonic acid (AA) or collagen induced platelet aggregations. Several solvent fractions of plant extracts including water fraction prepared from the methanol extract of Acanthopanax sp. was inhibitory against rat platelet aggregations. The activity guided treatments and fractionations of the water fraction from A. senticosus Max yielded two anti-platelet aggregatory substances, 3, 4-dihydroxybenzoic acid (I) and its artefact ethyl 3, 4-dihydroxybenzoate(II). The inhibitory activities of I and II against rat platelet aggregation were compared with that of aspirin, a known inhibitor of platelet aggregation. Discussions also included the results of the investigations on the structural activity relationships among the various dihydroxybenzoic acid derivatives against platelet aggregations induced by either one of ADP, AA or collagen.

  • PDF

The Inhibiton Effects of Hypercholesterolemia and Platelet in Fermented and Non-Fermented Preparation of Garlic

  • Kim, Hyun-Kyoung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.1-10
    • /
    • 2019
  • This Dietary cholesterol augments lipid profile and primes production and activation of platelets, leading to development of atherosclerosis which produce several detrimental effects on cardiovascular health. Ethnomedicine and Mediterranean diet are natural sources and cost effective modes against several ailments including cardiovascular diseases while fermented foods have gained interest due to their increased nutrient profile, enhanced bioavailability and efficacy. Garlic has been known to reduce cholesterol and inhibit platelet activation. We examined whether fermented garlic ameliorates effects of hypercholesterolemia and platelet functions in rats. Methodology: Male SD rats were fed with hypercholesterolemia diet and treated with spirulina, fermented and non-fermented preparations of garlic for one month. Platelet aggregation and granule secretion were assessed to evaluate platelet activation. Liver and kidney weights, lipid and enzymatic profile of serum and whole blood analysis was performed. Expressions of SREBP, ACAT-2 and HMG-CoA were assessed using RT-PCR while liver and adipose tissues were analyzed for histological changes. Both fermented and non-fermented garlic inhibited platelet aggregation and granule secretion while fermented garlic showed greater inhibitor tendency. Fermented garlic significantly reduced liver weight and triglycerides concentrations than non-fermented garlic. Similarly, fermented garlic greatly abrogated the detrimental effects of steatosis on liver and adipose tissues. Fermented garlic significantly improved lipid profile and modulated platelet functions, thereby inhibiting atherosclerosis and platelet related cardiovascular disorders.

Effect of Cordycepin-Enriched WIB801C from Cordyceps militaris Suppressing Fibrinogen Binding to Glycoprotein IIb/IIIa

  • Lee, Dong-Ha;Kim, Hyun-Hong;Lim, Deok Hwi;Kim, Jong-Lae;Park, Hwa-Jin
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.60-70
    • /
    • 2015
  • In this study, we investigated the effects of cordycepin-enriched (CE)-WIB801C, a n-butanol extract of Cordyceps militaris-hypha on collagen-stimulated platelet aggregation. CE-WIB801C dose dependently inhibited collagen-induced platelet aggregation, and had a synergistic effect together with cordycepin (W-cordycepin) from CE-WIB801C on the inhibition of collagen-induced platelet aggregation. CE-WIB801C and cordycepin stimulated the phosphorylation of VASP ($Ser^{157}$) and the dephosphorylation of PI3K and Akt, and inhibited the binding of fibrinogen to glycoprotein IIb/IIIa (${\alpha}IIb/{\beta}3$) and the release of ATP and serotonin in collagen-induced platelet aggregation. A-kinase inhibitor Rp-8-Br-cAMPS reduced CE-WIB801C-, and cordycepin-increased VASP ($Ser^{157}$) phosphorylation, and increased CE-WIB801C-, and cordycepin-inhibited the fibrinogen binding to ${\alpha}IIb/{\beta}3$. Therefore, we demonstrate that CE-WIB801C-, and cordycepin-inhibited fibrinogen binding to ${\alpha}IIb/{\beta}3$are due to stimulation of cAMP-dependent phosphorylation of VASP ($Ser^{157}$), and inhibition of PI3K/Akt phosphorylation. These results strongly indicate that CE-WIB801C and cordycepin may have preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.

Inhibitory effects of total saponin from Korean Red Ginseng on [Ca2+]i mobilization through phosphorylation of cyclic adenosine monophosphate-dependent protein kinase catalytic subunit and inositol 1,4,5-trisphosphate receptor type I in human platelets

  • Shin, Jung-Hae;Kwon, Hyuk-Woo;Cho, Hyun-Jeong;Rhee, Man Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.354-364
    • /
    • 2015
  • Background: Intracellular $Ca^{2+}$($[Ca^{2+}]_i$) is a platelet aggregation-inducing molecule. Therefore, understanding the inhibitory mechanism of $[Ca^{2+}]_i$mobilization is very important to evaluate the antiplatelet effect of a substance. This study was carried out to understand the $Ca^{2+}$-antagonistic effect of total saponin from Korean Red Ginseng (KRG-TS). Methods: We investigated the $Ca^{2+}$-antagonistic effect of KRG-TS on cyclic nucleotides-associated phosphorylation of inositol 1,4,5-trisphosphate receptor type I ($IP_3RI$) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) in thrombin (0.05 U/mL)-stimulated human platelet aggregation. Results: The inhibition of $[Ca^{2+}]_i$ mobilization by KRG-TS was increased by a PKA inhibitor (Rp-8-BrcAMPS), which was more stronger than the inhibition by a cyclic guanosine monophosphate (cGMP)- dependent protein kinase (PKG) inhibitor (Rp-8-Br-cGMPS). In addition, Rp-8-Br-cAMPS inhibited phosphorylation of PKA catalytic subunit (PKAc) ($Thr^{197}$) by KRG-TS. The phosphorylation of $IP_3RI$ ($Ser^{1756}$) by KRG-TS was very strongly inhibited by Rp-8-Br-cAMPS compared with that by Rp-8-BrcGMPS. These results suggest that the inhibitory effect of $[Ca^{2+}]_i$ mobilization by KRG-TS is more strongly dependent on a cAMP/PKA pathway than a cGMP/PKG pathway. KRG-TS also inhibited the release of adenosine triphosphate and serotonin. In addition, only G-Rg3 of protopanaxadiol in KRG-TS inhibited thrombin-induced platelet aggregation. Conclusion: These results strongly indicate that KRG-TS is a potent beneficial compound that inhibits $[Ca^{2+}]_i$ mobilization in thrombin-platelet interactions, which may result in the prevention of platelet aggregation-mediated thrombotic disease.

Antiplatelet Activity of [5-(2-Methoxy-5-chlorophenyl)furan-2-ylcarbonyl]guanidine (KR-32570), a Novel Sodium/hydrogen Exchanger-1 and Its Mechanism of Action

  • Lee Kyung-Sup;Park Jung-Woo;Jin Yong-Ri;Jung In-Sang;Cho Mi-Ra;Yi Kyu-Yang;Yoo Sung-Eun;Chung Hun-Jong;Yun Yeo-Pyo;Park Tae-Kyu;Shin Hwa-Sup
    • Archives of Pharmacal Research
    • /
    • v.29 no.5
    • /
    • pp.375-383
    • /
    • 2006
  • The anti platelet effects of a novel guanidine derivative, KR-32570 ([5-(2-methoxy-5-chlorophenyl) furan-2-ylcarbonyl]guanidine), were investigated with an emphasis on the mechanisms underlying its inhibition of collagen-induced platelet aggregation. KR-32570 significantly inhibited the aggregation of washed rabbit platelets induced by collagen $(10{\mu}g/mL)$, thrombin (0.05 U/mL), arachidonic acid $(100{\mu}M)$, a thromboxane (TX) $A_2$ mimetic agent U46619 (9,11-dideoxy-9,11-methanoepoxy-prostaglandin $F_2,\;1{\mu}M$) and a $Ca^{2+}$ ATPase inhibitor thapsigargin $(0.5{\mu}M)$ ($IC_{50}$ values: $13.8{\pm}1.8,\;26.3{\pm}1.2,\;8.5{\pm}0.9,\;4.3{\pm}1.7\;and\;49.8{\pm}1.4{\mu}M$, respectively). KR-32570 inhibited the collagen-induced liberation of $[^3H]$arachidonic acid from the platelets in a concentration dependent manner with complete inhibition being observed at $50{\mu}M$. The $TXA_2$ synthase assay showed that KR-32570 also inhibited the conversion of the substrate $PGH_2$ to $TXB_2$ at all concentrations. Furthermore, KR-32570 significantly inhibited the $[Ca^{2+}]_i$ mobilization induced by collagen at $50{\mu}M$, which is the concentration that completely inhibits platelet aggregation. KR-32570 also decreased the level of collagen $(10{\mu}g/mL)$induced secretion of serotonin from the dense-granule contents of platelets, and inhibited the NHE-1-mediated rabbit platelet swelling induced by intracellular acidification. These results suggest that the antiplatelet activity of KR-32570 against collagen-induced platelet aggregation is mediated mainly by inhibiting the release of arachidonic acid, $TXA_2$ synthase, the mobilization of cytosolic $Ca^{2+}$ and NHE-1.

Prediction of the human in vivo antiplatelet effect of S- and R-indobufen using population pharmacodynamic modeling and simulation based on in vitro platelet aggregation test

  • Noh, Yook-Hwan;Han, Sungpil;Choe, Sangmin;Jung, Jin-Ah;Jung, Jin-Ah;Hwang, Ae-Kyung;Lim, Hyeong-Seok
    • Translational and Clinical Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.160-165
    • /
    • 2018
  • Indobufen ($Ibustrin^{(R)}$), a reversible inhibitor of platelet aggregation, exists in two enantiomeric forms in 1:1 ratio. Here, we characterized the anti-platelet effect of S- and R-indobufen using response surface modeling using $NONMEM^{(R)}$ and predicted the therapeutic doses exerting the maximal efficacy of each enantioselective S- and R-indobufen formulation. S- and R-indobufen were added individually or together to 24 plasma samples from drug-naïve healthy subjects, generating 892 samples containing randomly selected concentrations of the drugs of 0-128 mg/L. Collagen-induced platelet aggregation in platelet-rich plasma was determined using a Chrono-log Lumi-Aggregometer. Inhibitory sigmoid $I_{max}$ model adequately described the anti-platelet effect. The S-form was more potent, whereas the R-form showed less inter-individual variation. No significant interaction was observed between the two enantiomers. The anti-platelet effect of multiple treatments with 200 mg indobufen twice daily doses was predicted in the simulation study, and the effect of S- or R-indobufen alone at various doses was predicted to define optimal dosing regimen for each enantiomer. Simulation study predicted that 200 mg twice daily administration of S-indobufen alone will produce more treatment effect than S-and R-mixture formulation. S-indobufen produced treatment effect at lower concentration than R-indobufen. However, inter-individual variation of the pharmacodynamic response was smaller in R-indobufen. The present study suggests the optimal doses of R-and S-enantioselective indobufen formulations in terms of treatment efficacy for patients with thromboembolic problems. The proposed methodology in this study can be applied to the develop novel enantio-selective drugs more efficiently.