• Title/Summary/Keyword: plasmodium

Search Result 209, Processing Time 0.022 seconds

A Case of Malaria Occurred in Child Living in Seoul (서울 시내 소아에서 발생한 말라리아 1례)

  • Shin, Seon Hee;Oh, Phil Soo;Kim, Young Jun;Kim, Mee Ran;Choi, Ha Joo;Yoon, Hae Sun;Park, Min Jung;Kim, Hyun Tae
    • Pediatric Infection and Vaccine
    • /
    • v.4 no.2
    • /
    • pp.282-287
    • /
    • 1997
  • Malaria due to Plasmodium vivax had been known as an indigenous protozoan disease in Korea. However, massive use of insecticides and improvement of sanitation for several decades have led to rapid reduction of malaria incidence, then it was recognized to have been almost eradicated in recent years. However in 1993, one case was reported in Phajoo, Kyungki-do, and then, reported cases have been increasing annually. Recently we encountered one case of malaria in a 3 year old male child living in Dorim-dong, Seoul, who had never been abroad and had no history of transfusion, drug abuse, and travel to endemic area in Korea. He had characteristic fever, chill and splenomegaly and was confirmed as Plasmodium vivax malaria with peripheral blood smear finding. He was successfully treated with hydroxy chloroquine and primaquine. We report this case with brief review of related literature.

  • PDF

Occupationally Acquired Plasmodium knowlesi Malaria in Brunei Darussalam

  • Koh, Gregory JN.;Ismail, Pg K.;Koh, David
    • Safety and Health at Work
    • /
    • v.10 no.1
    • /
    • pp.122-124
    • /
    • 2019
  • Simian malaria is a zoonotic disease caused by Plasmodium knowlesi infection. The common natural reservoir of the parasite is the macaque monkey and the vector is the Anopheles mosquito. Human cases of P. knowlesi infection has been reported in all South East Asian countries in the last decade, and it is currently the most common type of malaria seen in Malaysia and Brunei. Between 2007-2017, 73 cases of P. knowlesi infection were notified and confirmed to the Ministry of Health in Brunei. Of these, 15 cases (21%) were documented as work-related, and 28 other cases (38%) were classified as probably related to work (due to incomplete history). The occupations of those with probable and confirmed work related infections were border patrol officers, Armed Forces and security personnel, Department of Forestry officers, boatmen and researchers. The remaining cases classified as most likely not related to work were possibly acquired via peri-domestic transmission. The risk of this zoonotic infection extends to tourists and overseas visitors who have to travel to the jungle in the course of their work. It can be minimised with the recommended use of prophylaxis for those going on duty into the jungles, application of mosquito/insect repellants, and use of repellant impregnated uniforms and bed nets in jungle camp sites.

Molecular Markers for Sulfadoxine/Pyrimethamine and Chloroquine Resistance in Plasmodium falciparum in Thailand

  • Kuesap, Jiraporn;Suphakhonchuwong, Nutnicha;Kalawong, Lertluk;Khumchum, Natthaya
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.2
    • /
    • pp.109-116
    • /
    • 2022
  • Drug resistance is an important problem hindering malaria elimination in tropical areas. Point mutations in Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes confer resistance to antifolate drug, sulfadoxine-pyrimethamine (SP) while P. falciparum chloroquine-resistant transporter (Pfcrt) genes caused resistance to chloroquine (CQ). Decline in Pfdhfr/Pfdhps and Pfcrt mutations after withdrawal of SP and CQ has been reported. The aim of present study was to investigate the prevalence of Pfdhfr, Pfdhps, and Pfcrt mutation from 2 endemic areas of Thailand. All of 200 blood samples collected from western area (Thai-Myanmar) and southern area (Thai-Malaysian) contained multiple mutations in Pfdhfr and Pfdhps genes. The most prevalent haplotypes for Pfdhfr and Pfdhps were quadruple and double mutations, respectively. The quadruple and triple mutations of Pfdhfr and Pfdhps were common in western samples, whereas low frequency of triple and double mutations was found in southern samples, respectively. The Pfcrt 76T mutation was present in all samples examined. Malaria isolated from 2 different endemic regions of Thailand had high mutation rates in the Pfdhfr, Pfdhps, and Pfcrt genes. These findings highlighted the fixation of mutant alleles causing resistance of SP and CQ in this area. It is necessary to monitor the re-emergence of SP and CQ sensitive parasites in this area.

Genetic Diversity and Clustering of the Rhoptry Associated Protein-1 of Plasmodium knowlesi from Peninsular Malaysia and Malaysian Borneo

  • Ummi Wahidah Azlan;Yee Ling Lau;Mun Yik Fong
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.6
    • /
    • pp.393-400
    • /
    • 2022
  • Human infection with simian malaria Plasmodium knowlesi is a cause for concern in Southeast Asian countries, especially in Malaysia. A previous study on Peninsular Malaysia P. knowlesi rhoptry associated protein-1 (PkRAP1) gene has discovered the existence of dimorphism. In this study, genetic analysis of PkRAP1 in a larger number of P. knowlesi samples from Malaysian Borneo was conducted. The PkRAP1 of these P. knowlesi isolates was PCR-amplified and sequenced. The newly obtained PkRAP1 gene sequences (n=34) were combined with those from the previous study (n=26) and analysed for polymorphism and natural selection. Sequence analysis revealed a higher genetic diversity of PkRAP1 compared to the previous study. Exon II of the gene had higher diversity (π=0.0172) than exon I (π=0.0128). The diversity of the total coding region (π=0.0167) was much higher than those of RAP1 orthologues such as PfRAP-1 (π=0.0041) and PvRAP1 (π=0.00088). Z-test results indicated that the gene was under purifying selection. Phylogenetic tree and haplotype network showed distinct clustering of Peninsular Malaysia and Malaysian Borneo PkRAP1 haplotypes. This geographical-based clustering of PkRAP1 haplotypes provides further evidence of the dimorphism of the gene and possible existence of 2 distinct P. knowlesi lineages in Malaysia.

Monitoring antimalarial drug-resistance markers in Somalia

  • Abdifatah Abdullahi Jalei;Kesara Na-Bangchang;Phunuch Muhamad;Wanna Chaijaroenkul
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.1
    • /
    • pp.78-83
    • /
    • 2023
  • The use of an effective antimalarial drug is the cornerstone of malaria control. However, the development and spread of resistant Plasmodium falciparum strains have placed the global eradication of malaria in serious jeopardy. Molecular marker analysis constitutes the hallmark of the monitoring of Plasmodium drug-resistance. This study included 96 P. falciparum PCR-positive samples from southern Somalia. The P. falciparum chloroquine resistance transporter gene had high frequencies of K76T, A220S, Q271E, N326S, and R371I point mutations. The N86Y and Y184F mutant alleles of the P. falciparum multidrug resistance 1 gene were present in 84.7 and 62.4% of the isolates, respectively. No mutation was found in the P. falciparum Kelch-13 gene. This study revealed that chloroquine resistance markers are present at high frequencies, while the parasite remains sensitive to artemisinin (ART). The continuous monitoring of ART-resistant markers and in vitro susceptibility testing are strongly recommended to track resistant strains in real time.

Evaluation of the antimalarial activity of SAM13-2HCl with morpholine amide (SKM13 derivative) against antimalarial drug-resistant Plasmodium falciparum and Plasmodium berghei infected ICR mice

  • Hyelee Hong;Kwonmo Moon;Thuy-Tien Thi Trinh;Tae-Hui Eom;Hyun Park;Hak Sung Kim;Seon-Ju Yeo
    • Parasites, Hosts and Diseases
    • /
    • v.62 no.1
    • /
    • pp.42-52
    • /
    • 2024
  • Antimalarial drugs are an urgently need and crucial tool in the campaign against malaria, which can threaten public health. In this study, we examined the cytotoxicity of the 9 antimalarial compounds chemically synthesized using SKM13-2HCl. Except for SKM13-2HCl, the 5 newly synthesized compounds had a 50% cytotoxic concentration (CC50) >100 μM, indicating that they would be less cytotoxic than SKM13-2HCl. Among the 5 compounds, only SAM13-2HCl outperformed SKM13-2HCl for antimalarial activity, showing a 3- and 1.3-fold greater selective index (SI) (CC50/IC50) than SKM13-2HCl in vitro against both chloroquine-sensitive (3D7) and chloroquine -resistant (K1) Plasmodium falciparum strains, respectively. Thus, the presence of morpholine amide may help to effectively suppress human-infectious P. falciparum parasites. However, the antimalarial activity of SAM13-2HCl was inferior to that of the SKM13-2HCl template compound in the P. berghei NK65-infected mouse model, possibly because SAM13-2HCl had a lower polarity and less efficient pharmacokinetics than SKM13-2HCl. SAM13-2HCl was more toxic in the rodent model. Consequently, SAM13-2HCl containing morpholine was selected from screening a combination of pharmacologically significant structures as being the most effective in vitro against human-infectious P. falciparum but was less efficient in vivo in a P. berghei-infected animal model when compared with SKM13-2HCl. Therefore, SAM13-2HCl containing morpholine could be considered a promising compound to treat chloroquine-resistant P. falciparum infections, although further optimization is crucial to maintain antimalarial activity while reducing toxicity in animals.

Novel Real Time PCR Method for Detection of Plasmodium vivax (새로운 Real Time PCR 방법을 통한 Malaria(Plasmodium vivax)의 검출)

  • Ki, Yeon-Ah;Kim, So-Youn
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.2
    • /
    • pp.148-153
    • /
    • 2005
  • Malaria is a re-emerging infectious disease that is spreading to areas where it had been eradicated, such as Eastern Europe and Central Asia. To avoid the mortality from malaria, early detection of the parasite is a very important issue. The peripheral blood smear has been the gold standard method for the diagnosis of malaria infection. Recently, several other methods have been introduced for quantitative detection of malaria parasites. Real time PCR that employs fluorescent labels to enable the continuous monitoring of PCR product formation throughout the reaction has recently been used to detect several human malaria parasites. 18S rRNA sequences from malaria parasites have been amplified using Taqman real time PCR assay. Here, a SYBR Green-based real time quantitative PCR assay for the detection of malaria parasite-especially, Plasmodium vivax - was applied for the evaluation of 26 blood samples from Korean malaria patients. Even though SYBR Green-based real time PCR is easier and cheaper than Taqman-based assay, SYBR Green-based assay cannot be used because 18S rRNA cannot be specifically amplified using 1 primer set. Therefore, we used DBP gene sequences from Plasmodium vivax, which is specific for the SYBR Green based assays. We amplified the DBP gene from the 26 blood samples of malaria patients using SYBR Green based assay and obtained the copy numbers of DBP genes for each sample. Also, we selected optimal reference gene between ACTB and B2M using real time assay to get the stable genes regardless of Malaria titer. Using selected ACTB reference genes, we successfully converted the copy numbers from samples into titer, ${\sharp}$ of parasites per microliter. Using the resultant titer from DBP based SYBER Green assay with ACTB reference gene, we compared the results from our study with the titer from Taqman-based assay. We found that our results showed identical tendency with the results of 18S rRNA Taqman assay, especially in lower titer range. Thus, our DBP gene-utilized real time assay can detect Plasmodium vivax in Korean patient group semi-quantitatively and easily.