DOI QR코드

DOI QR Code

Genetic Diversity and Clustering of the Rhoptry Associated Protein-1 of Plasmodium knowlesi from Peninsular Malaysia and Malaysian Borneo

  • Ummi Wahidah, Azlan (Department of Parasitology, Faculty of Medicine, Universiti Malaya) ;
  • Yee Ling, Lau (Department of Parasitology, Faculty of Medicine, Universiti Malaya) ;
  • Mun Yik, Fong (Department of Parasitology, Faculty of Medicine, Universiti Malaya)
  • Received : 2022.10.01
  • Accepted : 2022.11.22
  • Published : 2022.12.31

Abstract

Human infection with simian malaria Plasmodium knowlesi is a cause for concern in Southeast Asian countries, especially in Malaysia. A previous study on Peninsular Malaysia P. knowlesi rhoptry associated protein-1 (PkRAP1) gene has discovered the existence of dimorphism. In this study, genetic analysis of PkRAP1 in a larger number of P. knowlesi samples from Malaysian Borneo was conducted. The PkRAP1 of these P. knowlesi isolates was PCR-amplified and sequenced. The newly obtained PkRAP1 gene sequences (n=34) were combined with those from the previous study (n=26) and analysed for polymorphism and natural selection. Sequence analysis revealed a higher genetic diversity of PkRAP1 compared to the previous study. Exon II of the gene had higher diversity (π=0.0172) than exon I (π=0.0128). The diversity of the total coding region (π=0.0167) was much higher than those of RAP1 orthologues such as PfRAP-1 (π=0.0041) and PvRAP1 (π=0.00088). Z-test results indicated that the gene was under purifying selection. Phylogenetic tree and haplotype network showed distinct clustering of Peninsular Malaysia and Malaysian Borneo PkRAP1 haplotypes. This geographical-based clustering of PkRAP1 haplotypes provides further evidence of the dimorphism of the gene and possible existence of 2 distinct P. knowlesi lineages in Malaysia.

Keywords

Acknowledgement

This study was supported by the Long Term Research Grant Scheme (LRGS/1/2018/UM/01/1/1) of the Ministry of Higher Education, Malaysia. We would like to express our gratitude to Dr. Mohd Hafizi Abdul Hamid and Dr. Jenarun Jelip from Vector Borne Disease Sector, Disease Control Division, Ministry of Health, Malaysia, Dr. Rose Nani Mudin (Sabah Health Department Director) and Dr. Ooi Choo Huck Sarawak Health Department Director) for their contribution in coordinating nationwide sample collection. We also thank the public health officials from the Malaysian State Health Department and District Health offices in Pahang, Kelantan, Johor, Kedah, Terengganu, Perak, Negeri Sembilan, Selangor, Sabah, Sarawak and Federal Territory of Kuala Lumpur for their help in sample collection.

References

  1. Singh B, Daneshvar C. Human infections and detection of Plasmodium knowlesi. Clin Microbiol Rev 2013; 26: 165-184. https://doi.org/10.1128/CMR.00079-12
  2. Naik DG. Plasmodium knowlesi-mediated zoonotic malaria: A challenge for elimination. Trop Parasitol 2020; 10: 3-6. https://doi.org/10.4103/tp.TP_17_18
  3. Amir A, Cheong FW, Ryan De Silva J, Wee J, Liew K, Lau YL. Plasmodium knowlesi malaria: current research perspectives. Infect Drug Resist 2018; 11: 1145-1155. https://doi.org/10.2147/IDR.S148664
  4. World Health Organization. World Malaria Report 2021. World Health Organization. Geneva, Swithzerland. 2021.
  5. Hussin N, Lim YAL, Goh PP, William T, Jelip J, Mudin RN. Updates on malaria incidence and profile in Malaysia from 2013 to 2017. Malar J 2020; 19: 1-14. https://doi.org/10.1186/s12936-020-3135-x
  6. Fong MY, Rashdi SAA, Yusof R, Lau YL. Distinct genetic difference between the Duffy binding protein (PkDBPαII) of Plasmodium knowlesi clinical isolates from North Borneo and Peninsular Malaysia. Malar J 2015; 14: 1-7. https://doi.org/10.1186/s12936-015-0610-x
  7. Yusof R, Ahmed MA, Jelip J, Ngian HU, Mustakim S, Hussin HM, Fong MY, Mahmud R, Sitam FAT, Rovie-Ryan Japning J, Snounou G, Escalante AA, Lau YL. Phylogeographic evidence for 2 genetically distinct zoonotic Plasmodium knowlesi Parasites, Malaysia. Emerg Infect Dis 2016; 22: 1371-1380. https://doi.org/10.3201/eid2208.151885
  8. Ouattara A, Tran TM, Doumbo S, Adams M, Agrawal S, Niangaly A, Nelson-Owens S, Doumtabe D, Tolo Y, Ongoiba A, TakalaHarrison S, Traore B, Silva JC, Crompton PD, Doumbo OK, Plowe CV. Extent and dynamics of polymorphism in the malaria vaccine candidate Plasmodium falciparum reticulocyte-binding protein homologue-5 in Kalifabougou, Mali. Am J Trop Med Hyg 2018; 99: 43-50. https://doi.org/10.4269/ajtmh.17-0737
  9. Preiser P, Kaviratne M, Khan S, Bannister L, Jarra W. The apical organelles of malaria merozoites: host cell selection, invasion, host immunity and immune evasion. Microbes Infect 2000; 2: 1461-1477. https://doi.org/10.1016/S1286-4579(00)01301-0
  10. Saul A, Cooper J, Hauquitz D, Irving D, Cheng Q, Stowers A, Limpaiboon T. The 42-kilodalton rhoptry-associated protein of Plasmodium falciparum. Mol Biochem Parasitol 1992; 50: 139-149. https://doi.org/10.1016/0166-6851(92)90251-e
  11. Collins WE, Walduck A, Sullivan JS, Andrews K, Stowers A, Morris CL, Jennings V, Yang C, Kendall J, Lin Q, Martin LB, Diggs C, Saul A. Efficacy of vaccines containing rhoptry-associated proteins RAP1 and RAP2 of Plasmodium falciparum in Saimiri boliviensis monkeys. Am J Trop Med Hyg 2000; 62: 466-479. https://doi.org/10.4269/ajtmh.2000.62.466
  12. Counihan NA, Kalanon M, Coppel RL, de Koning-Ward TF. Plasmodium rhoptry proteins: why order is important. Trends Parasitol 2013; 29: 228-236. https://doi.org/10.1016/j.pt.2013.03.003
  13. Richard D, Kats LM, Langer C, Black CG, Mitri K, Boddey JA, Cowman AF, Coppel RL. Identification of rhoptry trafficking determinants and evidence for a novel sorting mechanism in the malaria parasite Plasmodium falciparum. PLoS Pathog 2009; 5: e1000328. https://doi.org/10.1371/journal.ppat.1000328
  14. Ridley RG, Takacs B, Etlinger H, Scaife JG. A rhoptry antigen of Plasmodium falciparum is protective in Saimiri monkeys. Parasitology 1990; 101: 187-192. https://doi.org/10.1017/s0031182000063228
  15. Moreno R, Poltl-Frank F, Stuber D, Matile H, Mutz M, Weiss NA, Pluschke G. Rhoptry-associated protein 1-binding monoclonal antibody raised against a heterologous peptide sequence inhibits Plasmodium falciparum growth in vitro. Infect Immun 2001; 69: 2558-2568. https://doi.org/10.1128/IAI.69.4.2558-2568.2001
  16. Rawa MSA, Fong MY, Lau YL. Genetic diversity and natural selection in the rhoptry-associated protein 1 (RAP-1) of recent Plasmodium knowlesi clinical isolates from Malaysia. Malar J 2016; 15: 17. https://doi.org/10.1186/s12936-016-1127-7
  17. Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, Thaithong S, Brown KN. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 1993; 61: 315-320. https://doi.org/10.1016/0166-6851(93)90077-B
  18. Imwong M, Tanomsing N, Pukrittayakamee S, Day NPJ, White NJ, Snounou G. Spurious amplification of a Plasmodium vivax small-subunit RNA gene by use of primers currently used to detect P. knowlesi. J Clin Microbiol 2009; 47: 4173-4175. https://doi.org/10.1128/JCM.00811-09
  19. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
  20. Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009; 25: 1451-1452. https://doi.org/10.1093/bioinformatics/btp187
  21. Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 1986; 3: 418-426. https://doi.org/10.1093/oxfordjournals.molbev.a040410
  22. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989; 123: 585-595. https://doi.org/10.1093/genetics/123.3.585
  23. Pacheco MA, Elizabeth MR, Poe AC, Basco L, Udhayakumar V, Collins WE, Escalanteah AA. Evidence for negative selection on the gene encoding rhoptry-associated protein 1 (RAP-1) in Plasmodium spp. Infect Genet Evol 2010; 10: 655-661. https://doi.org/10.1016/j.meegid.2010.03.013
  24. Garzon-Ospina D, Romero-Murillo L, Patarroyo MA. Limited genetic polymorphism of the Plasmodium vivax low molecular weight rhoptry protein complex in the Colombian population. Infect Genet Evol 2010; 10: 261-227. https://doi.org/10.1016/j.meegid.2009.12.004
  25. Ahmed MA, Fong MY, Lau YL, Yusof R. Clustering and genetic differentiation of the normocyte binding protein (nbpxa) of Plasmodium knowlesi clinical isolates from Peninsular Malaysia and Malaysia Borneo. Malar J 2016; 15: 1-7. https://doi.org/10.1186/s12936-016-1294-6
  26. Ahmed MA, Chu KB, Vythilingam I, Quan FS. Within-population genetic diversity and population structure of Plasmodium knowlesi merozoite surface protein 1 gene from geographically distinct regions of Malaysia and Thailand. Malar J 2018; 17: 442. https://doi.org/10.1186/s12936-018-2583-z
  27. Grant WS, Bowen BW. Shallow Population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J Hered 1998; 89: 415-426. https://doi.org/10.1093/jhered/89.5.415
  28. Garg RK, Mishra V. Molecular insights into the genetic and haplotype diversity among four populations of Catla catla from Madhya Pradesh revealed through mtDNA cyto b gene sequences. J Genet Eng Biotechnol 2018; 16: 169-174. https://doi.org/10.1016/j.jgeb.2017.11.003
  29. Escalante AA, Cornejo OE, Rojas A, Udhayakumar V, Lal AA. Assessing the effect of natural selection in malaria parasites. Trends Parasitol 2004; 20: 388-395. https://doi.org/10.1016/j.pt.2004.06.002
  30. Baldi DL, Andrews KT, Waller RF, Roos DS, Howard RF, Crabb BS, Cowman AF. RAP1 controls rhoptry targeting of RAP2 in the malaria parasite Plasmodium falciparum. EMBO J 2000; 19: 2435-2443. https://doi.org/10.1093/emboj/19.11.2435
  31. Fong MY, Lau YL, Chang PY, Anthony CN. Genetic diversity, haplotypes and allele groups of Duffy binding protein (PkDBPαII) of Plasmodium knowlesi clinical isolates from Peninsular Malaysia. Parasit Vectors 2014; 7: 1-7. https://doi.org/10.1186/1756-3305-7-161
  32. Hudson RR, Slatkin M, Maddison WP. Estimation of levels of gene flow from DNA sequence data. Genetics 1992; 132: 583-589. https://doi.org/10.1093/genetics/132.2.583