Browse > Article

Novel Real Time PCR Method for Detection of Plasmodium vivax  

Ki, Yeon-Ah (Department of Chemistry, Dongguk University)
Kim, So-Youn (Department of Chemistry, Dongguk University)
Publication Information
Microbiology and Biotechnology Letters / v.33, no.2, 2005 , pp. 148-153 More about this Journal
Abstract
Malaria is a re-emerging infectious disease that is spreading to areas where it had been eradicated, such as Eastern Europe and Central Asia. To avoid the mortality from malaria, early detection of the parasite is a very important issue. The peripheral blood smear has been the gold standard method for the diagnosis of malaria infection. Recently, several other methods have been introduced for quantitative detection of malaria parasites. Real time PCR that employs fluorescent labels to enable the continuous monitoring of PCR product formation throughout the reaction has recently been used to detect several human malaria parasites. 18S rRNA sequences from malaria parasites have been amplified using Taqman real time PCR assay. Here, a SYBR Green-based real time quantitative PCR assay for the detection of malaria parasite-especially, Plasmodium vivax - was applied for the evaluation of 26 blood samples from Korean malaria patients. Even though SYBR Green-based real time PCR is easier and cheaper than Taqman-based assay, SYBR Green-based assay cannot be used because 18S rRNA cannot be specifically amplified using 1 primer set. Therefore, we used DBP gene sequences from Plasmodium vivax, which is specific for the SYBR Green based assays. We amplified the DBP gene from the 26 blood samples of malaria patients using SYBR Green based assay and obtained the copy numbers of DBP genes for each sample. Also, we selected optimal reference gene between ACTB and B2M using real time assay to get the stable genes regardless of Malaria titer. Using selected ACTB reference genes, we successfully converted the copy numbers from samples into titer, ${\sharp}$ of parasites per microliter. Using the resultant titer from DBP based SYBER Green assay with ACTB reference gene, we compared the results from our study with the titer from Taqman-based assay. We found that our results showed identical tendency with the results of 18S rRNA Taqman assay, especially in lower titer range. Thus, our DBP gene-utilized real time assay can detect Plasmodium vivax in Korean patient group semi-quantitatively and easily.
Keywords
Malaria; Plasmodium vivax; quantitative real time PCR; SYBR Green-based real time assay;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Kain, K. C, M. A. Harrington, S. Tennyson, and J. S. Keystone. 1998. Jul Imported malaria: prospective analysis of problems in diagnosis and management. Clin. Infect. Dis. 27: 142-149   DOI   ScienceOn
2 Phillips, R. S. 2001. Current status of malaria and potential for control Clin. Microbial. Rev. 14: 208-226   DOI   ScienceOn
3 Singh, B., A. Bobogare, J. Cox-Singh, G Snounou, M. S. Abdullah, and H. A. Rahman. 1999. A genus- and speciesspecific nested polymerase chain reaction malaria detection assay for epidemiologic studies. Am. J. Trop. Med. Hyg. 60: 687-692   PUBMED
4 Perandin, F., N. Manca, A. Calderaro, G Piccolo, L. Galati, L. Ricci, M. C. Medici, M. C. Arcangeletti, G. Snounou, G. Dettori, and C. Chezzi. 2004. Development of a real-time PCR assay for detection of Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale for routine clinical diagnosis. J. Clin. Microbial. 42: 1214-1219   DOI   ScienceOn
5 Hermsen, C. C., D. S. Telgt, E. H. Linders, L. A. van de Locht, W. M. Eling, E. J. Mensink, and R. W. Sauerwein. 2001. Detection of Plasmodium falciparum malaria parasites in vivo by real-time quantitative PCR. Mol. Biochem. Parasitol. 118: 247-251   DOI   ScienceOn
6 Seesod, N., P. Nopparat, A. Hedrum, A. Holder, S. Thaithong, M. Uhlen, and J. Lundeberg. 1997. An integrated system using immunomagnetic separation, polymerase chain reaction, and colorimetric detection for diagnosis of Plasmodium falciparum. Am. J. Trop. Med. Hyg. 56: 322-328   PUBMED
7 Gunderson, J. H., M. L. Sogin, G Wollett, M. Hollingdale, V. F. de la Cruz, A. P. Waters, and T. F. McCutchan. 1987. Structurally distinct, stage-specific ribosomes occur in Plasmodium. Science 238: 933-937   DOI   PUBMED
8 Milne, L. M., M. S. Kyi, P. L. Chiodini, and D. C. Warhurst. 1994. Accuracy of routine laboratory diagnosis of malaria in the United Kingdom. J. Clin. Pathol 47: 740-742   DOI   ScienceOn
9 Pieroni, P., C. D. Mills, C. Ohrt, M. A. Harrington, and K. C. Kain. 1998. Comparison of the ParaSight-F test and the ICT Malaria Pf test with the polymerase chain reaction for the diagnosis of Plasmodium falciparum malaria in travellers. Trans. R. Soc. Trop. Med. Hyg. 92: 166-169   DOI   PUBMED   ScienceOn
10 Kim, S. and T. Kim. 2003. Selection of optimal internal controls for gene expression profiling of liver diseases. Biotechniques 35: 456-460   PUBMED
11 Weiss, J. B. 1995. DNA probes and PCR for diagnosis of parasitic infections. Clin. Microbial. Rev. 8: 113-130
12 Farnert, A., A. P. Arez, A. T. Correia, A. Bjorkman, G. Snounou, and V. do Rosario. 1999. Sampling and storage of blood and the detection of malaria parasites by polymerase chain reaction. Trans. R. Soc. Trap. Med. Hyg. 93: 50-53   DOI   PUBMED   ScienceOn
13 Snounou, G, S. Viriyakosol, X. P. Zhu, W. Jarra, L. Pinheiro, V. E. do Rosario, S. Thaithong, and K. N. Brown. 1993. High sensit!vity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol. 61: 315-320   DOI   ScienceOn
14 Paik, Y. H., H. I. Ree, and J. C. Shim. 1988. Malaria in Korea. Jpn. J. Exp Med. 58: 55-60   PUBMED
15 Bustin, S. A. 2002. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol Endocrinol 29: 23-39   DOI   PUBMED   ScienceOn
16 Kain, K. C, D. E. Kyle, and C. Wongsrichanalai. 1994. Qualitative and semi-quantitative polymerase chain reaction to predict Plasmodium falciparum treatment failure. J. Infect. Dis. 170: 1626-1630   DOI   PUBMED   ScienceOn
17 Payne, D. 1988. Use and limitations of light microscopy for diagnosing malaria at the primary health care level. Bull. World Health Organ. 66: 621-626   PUBMED
18 Barnwell, J. W., M. E. Nichols, and P. Rubinstein. 1989. In vitro evaluation of the role of the Duffy blood group in erythrocyte invasion by Plasmodium vivax. J. Exp. Med. 169: 1795-1802   DOI   ScienceOn
19 Kawamoto, F., H. Miyake, O. Kaneko, M. Kimura, T. D. Nguyen, T. D. Nguyen, Q. Liu, M. Zhou, D. D. Le, S. Kawai, S. Isomura, and Y. Wataya. 1996. Sequence variation in the 18S rRNA gene, a target for PCR-based malaria diagnosis, in Plasmodium ovale from southern Vietnam. J. Clin. Microbiol. 34: 2287-2289   PUBMED
20 Levine, R. A., S. C. Warlaw, and S. P. Patton. 1989. Detection of haematoparasites using quantitative buffy coat analysis tubes. Parasitol. Today 5: 132-134   DOI   ScienceOn
21 Scopei. K. K., C. J. Fontes, A. C. Nunes, M. F. Horta, and E. M. Braga. 2004. High prevalence of Plamodium malariae infections in a Brazilian Amazon endemic area (ApiacasMato Grosso State) as detected by polymerase chain reaction. Acta Trop. 90: 61-64   DOI   ScienceOn
22 Snounou, G, S. Viriyakosol, W. Jarra, S. Thaithong, and K. N. Brown. 1993. Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections. Mol. Biochem. Parasitol. 58: 283-292   DOI   ScienceOn
23 Barker, R. H., T. Banchongaksorn, J. M. Courval, W. Suwonkerd, K. Rirnwungtragoon, and D. F. Wirth. 1994. Plasmodium falciparum and P vivax: factors effecting sensitivity and specificity of PCR-based diagnosis of malaria. Exp. Parasitol. 74: 41-49
24 Kho, W. G, J. Y. Chung, E. J. Sim, D. W. Kim, and W. C. Chung. 2001. Analysis of polymorphic regions of Plasmodium vivax Duffy binding protein of Korean isolates. Kor. J. Parasitol. 39: 143-150   DOI   ScienceOn