Browse > Article
http://dx.doi.org/10.3347/kjp.2022.60.6.393

Genetic Diversity and Clustering of the Rhoptry Associated Protein-1 of Plasmodium knowlesi from Peninsular Malaysia and Malaysian Borneo  

Ummi Wahidah Azlan (Department of Parasitology, Faculty of Medicine, Universiti Malaya)
Yee Ling Lau (Department of Parasitology, Faculty of Medicine, Universiti Malaya)
Mun Yik Fong (Department of Parasitology, Faculty of Medicine, Universiti Malaya)
Publication Information
Parasites, Hosts and Diseases / v.60, no.6, 2022 , pp. 393-400 More about this Journal
Abstract
Human infection with simian malaria Plasmodium knowlesi is a cause for concern in Southeast Asian countries, especially in Malaysia. A previous study on Peninsular Malaysia P. knowlesi rhoptry associated protein-1 (PkRAP1) gene has discovered the existence of dimorphism. In this study, genetic analysis of PkRAP1 in a larger number of P. knowlesi samples from Malaysian Borneo was conducted. The PkRAP1 of these P. knowlesi isolates was PCR-amplified and sequenced. The newly obtained PkRAP1 gene sequences (n=34) were combined with those from the previous study (n=26) and analysed for polymorphism and natural selection. Sequence analysis revealed a higher genetic diversity of PkRAP1 compared to the previous study. Exon II of the gene had higher diversity (π=0.0172) than exon I (π=0.0128). The diversity of the total coding region (π=0.0167) was much higher than those of RAP1 orthologues such as PfRAP-1 (π=0.0041) and PvRAP1 (π=0.00088). Z-test results indicated that the gene was under purifying selection. Phylogenetic tree and haplotype network showed distinct clustering of Peninsular Malaysia and Malaysian Borneo PkRAP1 haplotypes. This geographical-based clustering of PkRAP1 haplotypes provides further evidence of the dimorphism of the gene and possible existence of 2 distinct P. knowlesi lineages in Malaysia.
Keywords
Plasmodium knowlesi; rhoptry associated protein-1; genetic diversity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Singh B, Daneshvar C. Human infections and detection of Plasmodium knowlesi. Clin Microbiol Rev 2013; 26: 165-184. https://doi.org/10.1128/CMR.00079-12   DOI
2 Naik DG. Plasmodium knowlesi-mediated zoonotic malaria: A challenge for elimination. Trop Parasitol 2020; 10: 3-6. https://doi.org/10.4103/tp.TP_17_18   DOI
3 Amir A, Cheong FW, Ryan De Silva J, Wee J, Liew K, Lau YL. Plasmodium knowlesi malaria: current research perspectives. Infect Drug Resist 2018; 11: 1145-1155. https://doi.org/10.2147/IDR.S148664   DOI
4 World Health Organization. World Malaria Report 2021. World Health Organization. Geneva, Swithzerland. 2021.
5 Hussin N, Lim YAL, Goh PP, William T, Jelip J, Mudin RN. Updates on malaria incidence and profile in Malaysia from 2013 to 2017. Malar J 2020; 19: 1-14. https://doi.org/10.1186/s12936-020-3135-x   DOI
6 Fong MY, Rashdi SAA, Yusof R, Lau YL. Distinct genetic difference between the Duffy binding protein (PkDBPαII) of Plasmodium knowlesi clinical isolates from North Borneo and Peninsular Malaysia. Malar J 2015; 14: 1-7. https://doi.org/10.1186/s12936-015-0610-x   DOI
7 Yusof R, Ahmed MA, Jelip J, Ngian HU, Mustakim S, Hussin HM, Fong MY, Mahmud R, Sitam FAT, Rovie-Ryan Japning J, Snounou G, Escalante AA, Lau YL. Phylogeographic evidence for 2 genetically distinct zoonotic Plasmodium knowlesi Parasites, Malaysia. Emerg Infect Dis 2016; 22: 1371-1380. https://doi.org/10.3201/eid2208.151885   DOI
8 Ouattara A, Tran TM, Doumbo S, Adams M, Agrawal S, Niangaly A, Nelson-Owens S, Doumtabe D, Tolo Y, Ongoiba A, TakalaHarrison S, Traore B, Silva JC, Crompton PD, Doumbo OK, Plowe CV. Extent and dynamics of polymorphism in the malaria vaccine candidate Plasmodium falciparum reticulocyte-binding protein homologue-5 in Kalifabougou, Mali. Am J Trop Med Hyg 2018; 99: 43-50. https://doi.org/10.4269/ajtmh.17-0737   DOI
9 Preiser P, Kaviratne M, Khan S, Bannister L, Jarra W. The apical organelles of malaria merozoites: host cell selection, invasion, host immunity and immune evasion. Microbes Infect 2000; 2: 1461-1477. https://doi.org/10.1016/S1286-4579(00)01301-0   DOI
10 Saul A, Cooper J, Hauquitz D, Irving D, Cheng Q, Stowers A, Limpaiboon T. The 42-kilodalton rhoptry-associated protein of Plasmodium falciparum. Mol Biochem Parasitol 1992; 50: 139-149. https://doi.org/10.1016/0166-6851(92)90251-e   DOI
11 Collins WE, Walduck A, Sullivan JS, Andrews K, Stowers A, Morris CL, Jennings V, Yang C, Kendall J, Lin Q, Martin LB, Diggs C, Saul A. Efficacy of vaccines containing rhoptry-associated proteins RAP1 and RAP2 of Plasmodium falciparum in Saimiri boliviensis monkeys. Am J Trop Med Hyg 2000; 62: 466-479. https://doi.org/10.4269/ajtmh.2000.62.466   DOI
12 Moreno R, Poltl-Frank F, Stuber D, Matile H, Mutz M, Weiss NA, Pluschke G. Rhoptry-associated protein 1-binding monoclonal antibody raised against a heterologous peptide sequence inhibits Plasmodium falciparum growth in vitro. Infect Immun 2001; 69: 2558-2568. https://doi.org/10.1128/IAI.69.4.2558-2568.2001   DOI
13 Counihan NA, Kalanon M, Coppel RL, de Koning-Ward TF. Plasmodium rhoptry proteins: why order is important. Trends Parasitol 2013; 29: 228-236. https://doi.org/10.1016/j.pt.2013.03.003   DOI
14 Richard D, Kats LM, Langer C, Black CG, Mitri K, Boddey JA, Cowman AF, Coppel RL. Identification of rhoptry trafficking determinants and evidence for a novel sorting mechanism in the malaria parasite Plasmodium falciparum. PLoS Pathog 2009; 5: e1000328. https://doi.org/10.1371/journal.ppat.1000328   DOI
15 Ridley RG, Takacs B, Etlinger H, Scaife JG. A rhoptry antigen of Plasmodium falciparum is protective in Saimiri monkeys. Parasitology 1990; 101: 187-192. https://doi.org/10.1017/s0031182000063228   DOI
16 Rawa MSA, Fong MY, Lau YL. Genetic diversity and natural selection in the rhoptry-associated protein 1 (RAP-1) of recent Plasmodium knowlesi clinical isolates from Malaysia. Malar J 2016; 15: 17. https://doi.org/10.1186/s12936-016-1127-7   DOI
17 Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, Thaithong S, Brown KN. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 1993; 61: 315-320. https://doi.org/10.1016/0166-6851(93)90077-B   DOI
18 Imwong M, Tanomsing N, Pukrittayakamee S, Day NPJ, White NJ, Snounou G. Spurious amplification of a Plasmodium vivax small-subunit RNA gene by use of primers currently used to detect P. knowlesi. J Clin Microbiol 2009; 47: 4173-4175. https://doi.org/10.1128/JCM.00811-09   DOI
19 Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009; 25: 1451-1452. https://doi.org/10.1093/bioinformatics/btp187   DOI
20 Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35: 1547-1549. https://doi.org/10.1093/molbev/msy096   DOI
21 Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 1986; 3: 418-426. https://doi.org/10.1093/oxfordjournals.molbev.a040410   DOI
22 Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989; 123: 585-595. https://doi.org/10.1093/genetics/123.3.585   DOI
23 Pacheco MA, Elizabeth MR, Poe AC, Basco L, Udhayakumar V, Collins WE, Escalanteah AA. Evidence for negative selection on the gene encoding rhoptry-associated protein 1 (RAP-1) in Plasmodium spp. Infect Genet Evol 2010; 10: 655-661. https://doi.org/10.1016/j.meegid.2010.03.013   DOI
24 Garzon-Ospina D, Romero-Murillo L, Patarroyo MA. Limited genetic polymorphism of the Plasmodium vivax low molecular weight rhoptry protein complex in the Colombian population. Infect Genet Evol 2010; 10: 261-227. https://doi.org/10.1016/j.meegid.2009.12.004   DOI
25 Ahmed MA, Fong MY, Lau YL, Yusof R. Clustering and genetic differentiation of the normocyte binding protein (nbpxa) of Plasmodium knowlesi clinical isolates from Peninsular Malaysia and Malaysia Borneo. Malar J 2016; 15: 1-7. https://doi.org/10.1186/s12936-016-1294-6   DOI
26 Escalante AA, Cornejo OE, Rojas A, Udhayakumar V, Lal AA. Assessing the effect of natural selection in malaria parasites. Trends Parasitol 2004; 20: 388-395. https://doi.org/10.1016/j.pt.2004.06.002   DOI
27 Ahmed MA, Chu KB, Vythilingam I, Quan FS. Within-population genetic diversity and population structure of Plasmodium knowlesi merozoite surface protein 1 gene from geographically distinct regions of Malaysia and Thailand. Malar J 2018; 17: 442. https://doi.org/10.1186/s12936-018-2583-z   DOI
28 Grant WS, Bowen BW. Shallow Population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J Hered 1998; 89: 415-426. https://doi.org/10.1093/jhered/89.5.415   DOI
29 Garg RK, Mishra V. Molecular insights into the genetic and haplotype diversity among four populations of Catla catla from Madhya Pradesh revealed through mtDNA cyto b gene sequences. J Genet Eng Biotechnol 2018; 16: 169-174. https://doi.org/10.1016/j.jgeb.2017.11.003   DOI
30 Baldi DL, Andrews KT, Waller RF, Roos DS, Howard RF, Crabb BS, Cowman AF. RAP1 controls rhoptry targeting of RAP2 in the malaria parasite Plasmodium falciparum. EMBO J 2000; 19: 2435-2443. https://doi.org/10.1093/emboj/19.11.2435   DOI
31 Fong MY, Lau YL, Chang PY, Anthony CN. Genetic diversity, haplotypes and allele groups of Duffy binding protein (PkDBPαII) of Plasmodium knowlesi clinical isolates from Peninsular Malaysia. Parasit Vectors 2014; 7: 1-7. https://doi.org/10.1186/1756-3305-7-161   DOI
32 Hudson RR, Slatkin M, Maddison WP. Estimation of levels of gene flow from DNA sequence data. Genetics 1992; 132: 583-589. https://doi.org/10.1093/genetics/132.2.583   DOI