• Title/Summary/Keyword: plasma-sprayed

Search Result 223, Processing Time 0.024 seconds

Thermoelectric Properties of p- type FeSi2 Processed by Mechanical Alloying and Plasma Thermal Spraying (기계적 합금화 p-type FeSi2의 플라즈마 용사 성형 및 열전 특성)

  • Choi Mun-Gwan;Ur Soon-Chul;Kim IL-Ho
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.218-223
    • /
    • 2004
  • P-type $\beta$-FeSi$_2$ with a nominal composition of $Fe_{0.92}Mn_{0.08}Si_2$ powders has been produced by mechanical alloying process. As-milled powders were spray dried and consolidated by atmospheric plasma thermal spraying as a rapid sintering process. As-milled powders were of metastable state and fully transformed to $\beta$-$FeSi_2$ phase by subsequent isothermal annealing. However, as-thermal sprayed $Fe_{0.92}Mn_{0.08}Si_2$ consisted of untransformed mixture of $\alpha$-$Fe_2Si_{5}$ and $\varepsilon$-FeSi phases. Isothermal annealing has been carried out to induce transformation to the thermoelectric semiconducting $\beta$-$FeSi_2$ phase. Isothermal annealing at $845^{\circ}C$ in vacuum gradually led to the thermoelectric semiconducting $\beta$-$FeSi_2$ phase transformation, but some residual metallic $\alpha$ and $\varepsilon$ phases were unavoidable even after prolonged annealing. Thermoelectric properties of $\beta$-$FeSi_2$ materials before and after isothermal annealing were evaluated. Seebeck coefficient increased and electric conductivity decreased with increasing annealing time due to the phase transition from metallic phases to semiconducting phases. Thermoelectric properties showed gradual increment, but overall properties appeared to be inferior to those of vacuum hot pressed specimens.

Photoelectrical Conductivity and Photodegradation Properties of $TiO_2$ and Ag Sputtered $TiO_2$ Plasma Spraying Coatings ($TiO_2$ 및 Ag 스퍼터링-$TiO_2$ 플라즈마 용사피막의 광전류 및 광분해 특성)

  • Kang, Tae-Gu;Jang, Yong-Ho;Park, Kyeung-Chae
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.38-43
    • /
    • 2009
  • In this study, we investigated photocatalytic ability of plasma sprayed $TiO_2$ and Ag sputtering $TiO_2$(Ag-$TiO_2$) coatings. A sputtering processes were adopted to coat the surface of $TiO_2$ with Ag(99.99%). Ag was sputtered at 10mA, 450V for $1{\sim}11$ seconds. $TiO_2$ and Ag-$TiO_2$ coatings were heat-treated at 250, 300, 350, $400^{\circ}C$ for $0{\sim}240$seconds. Photoelectrical conductivity was measured by four-point probe, and photodegradation was calculated by UV-V is spectrometer. Microstructure observation of $TiO_2$ and Ag-$TiO_2$ coatings were investigated by SEM. Crystal structure of $TiO_2$ and Ag-$TiO_2$ coatings were investigated by XRD. Qualitative analyses of $TiO_2$ and Ag-$TiO_2$ coatings were conducted by EDX. When $TiO_2$ coatings were heat-treated at $350^{\circ}C$ for 30 sec, photoelectrical conductivity and photodegradation were best. And in XRD analysis result, (101)/(110) relative intensity ratio of $TiO_2$(rutile) was comparably changed with photoelectrical conductivity. When Ag-$TiO_2$ coatings were heat-treated at $350^{\circ}C$ for 30 [sec] after sputtering Ag for 7 sec, Photoelectrical conductivity and photodegradation are best. Surface of coatings in such condition has very small and uniform Ag particles.

Characteristics of Plasma Sprayed BSCCO Superconductor Coatings with Annealing Time After Partial Melt Process (BSCCO 플라즈마 용사피막의 부분용융열처리 후 어닐링 시간에 따른 초전도 특성)

  • Park, Jeong-Sik;Lee, Seon-Hong;Park, Kyeung-Chae
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.116-122
    • /
    • 2014
  • $Bi_2Sr_2CaCu_2O_x$(Bi-2212) and $Bi_2Sr_2Ca_2Cu_3O_y$(Bi-2223) high-Tc superconductors(HTS) have been manufactured by plasma spraying, partial melt process(PMP) and annealing treatment(AT). A Bi-2212/2223 HTS coating layer was synthesized through the peritectic reaction between a 0212 oxide coating layer and 2001 oxide coating layer by the PMP-AT process. The 2212 HTS layer consists of whiskers grown in the diffusion direction. The Bi-2223 phase and secondary phase in the Bi-2212 layer were observed. The secondary phase was distributed uniformly over the whole layer. As annealing time goes on, the Bi-2212 phase decreases with mis-orientation and irregular shape, but the Bi-2223 phase increases because a new Bi-2223 phase is formed inside the pre-existing Bi-2212 crystals, and because of the nucleation of a Bi-2223 phase at the edge of Bi-2212 crystals by diffusion of Ca and Cu-O bilayers. In this study the spray coated layer showed superconducting transitions with an onset Tc of about both 115 K, and 50 K. There were two steps. Step 1 at 115 K is due to the diamagnetism of the Bi-2223 phase and step 2 at 50 K is due to the diamagnetism of the Bi-2212 phase.

Joining Characteristics of Plasma Sprayed BSCCO Superconducting Coatings (플라즈마 용사 BSCCO(Bismuth Strontium Calcium Copper Oxide) 초전도 피막의 접합 특성)

  • Park, Jung-Sik;Cho, Chang-Eun;Ko, Young-Bong;Park, Kwang-Soon;Park, Kyeung-Chae
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.181-186
    • /
    • 2013
  • We performed plasma spraying for 2001 (Bi:Cu = 2:1), 0212 (Sr:Ca:Cu = 2:1:2) oxide powders. $Bi_2Sr_2CaCu_2Ox$ (2212) superconductor has been prepared by PMP-AT (partial melting process-annealing treatment). The 2212 phase is synthesized between Sr-Ca-Cu oxide coating layer (0212) and Bi-Cu oxide coating layer (2001) by movement of partial melted Bi on 2001 layer and the diffusion reaction (Cu, Sr, Ca) after PMP-AT. There are two different coating layers on joining process. The one is ABAB coating layers and the other is BAAB coating layers by arrangement of 2001 (A), 0212 (B) layers. We performed heat treatment these two different coating layers processes under same PMP-AT conditions. We obtained Bi-2212 superconducting layers at each experimental condition, and the result of MPMS, the critical temperature was showed about 78 K. But the microstructure images and result of EDS as each experimental variable were showed about the qualitatively different Bi-2212 superconducting phases. We also deduced the generation mechanism of Bi-2212 superconducting layer as a result of these experimental data, microstruc ture images, EDS data and phase diagram.

Hot Corrosion Behavior of Plasma-Sprayed Partially Stabilized Zirconia Coatings in a Lithium Molten Salt (리튬용융염에서 플라즈마 용사된 부분안정화 지르코니아 코팅층의 고온부식 거동)

  • Cho, Soo-Haeng;Hong, Sun-Seok;Kang, Dae-Seong;Park, Byung-Heong;Hur, Jin-Mok;Lee, Han-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.646-651
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, yttria-stabilized zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at $675^{\circ}C$ for 216 hours in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of $LiCl-Li_2O$ molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts.

A Study on Contact Arc Metal Cutting for Dismantling of Reactor Pressure Vessel (원자로 해체를 위한 수중 아크 금속 절단기술에 대한 연구)

  • Kim, Chan Kyu;Moon, Do Yeong;Moon, Il Woo;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.22-27
    • /
    • 2022
  • In accordance with the growing trend of decommissioning nuclear facilities, research on the cutting process is actively proceeding worldwide. In general, a thermal cutting process, such as plasma cutting is applied to decommissioning a nuclear reactor pressure vessel (RPV). Plasma cutting has the advantage of removing the radioactive materials and being able to cut thick materials. However, when operating under water, the molten metal remains in the cut plane and re-solidifies. Hence, cutting is not entirely accomplished. For these environmental reasons, it is difficult to cut thick metal. The contact arc metal cutting (CAMC) process can be used to cut thick metal under water. CAMC is a process that cuts metal using a plate-shaped electrode based on a high-current arc plasma heat source. During the cutting process, high-pressure water is sprayed from the electrode to remove the molten metal, known as rinsing. As the CAMC is conducted without using a shielding gas, such as Argon, the electrode is consumed during the process. In this study, CAMC is introduced as a method for dismantling nuclear vessels and the relationship between the metal removal and electrode consumption is investigated according to the cutting conditions.

Effect of Particle Size on the Characterization of Plasma Sprayed $Al_2O_3$ Coating Layer (플라즈마 용사된 $Al_2O_3$층의 특성에 미치는 입자크기의 영향)

  • Kim, Byeong-Hui;Seo, Dong-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.428-433
    • /
    • 1999
  • An objective of this study is to compare the characteristics of coating layer of plasma sprayed fine $Al_2O_3$ and those of layer by commercial $Al_2O_3$(Metco 105). The microstructure of fine $Al_2O_3$ coating layer was denser compared with commercial $Al_2O_3$ coating layer. The surface roughness$(R_a)$ of the layer by the fine $Al_2$O$_3$ was lower compared with that of commercial $Al_2O_3$. Thickness of splat for fine $Al_2O_3$ was $1.4\mu\textrm{m}$ while the commercial $Al_2O_3$ was $3.53\mu\textrm{m}$. The main phase existing in coating layer was of $\gamma-Al_2O_3$ and the fraction of $\alpha-Al_2O_3$ in fine $Al_2O_3$ coating layer was 8.39% and that of commercial $Al_2O_3$ was 13.79%. Microhardness was no great difference between the fine and commercial $Al_2O_3$ but deviation of the fine $Al_2O_3$ coating layer was relatively large. Accordingly, the strength of splat of the coating was expected that fine $Al_2O_3$was lower than commercial $Al_2O_3$ powder.

  • PDF

A STUDY ON SHEAR BOND STRENGTH OF INTERFACE BETWEEN BONE AND TITANIUM PLASMA SPRAYED IMZ IMPLANT IN RABBITS (가토에 이식된 Titanium plasma Sprayed IMZ 임프란트와 골의 계면 접촉 양상에 따른 결합력에 관한 연구)

  • Han, Chong-Hyun;Han, Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.225-243
    • /
    • 1991
  • In recent years immediate implantation has been tried by a few clinicians. This study placed IMZ implants in the rabbit femur with and without bony defects around the implant for simulating fresh extraction site. And one group with bony defects used porous hydroxyapatite ganules(HA) to fill if and the other group left the bony defects around the implant. The purpose of this study was to compare the shear bond strength and the bony contact and formation around the implant. Fifteen rabbits were divided into three groups and placed 10 IMZ implants to each group. Implant sites were surgically prepared with IMZ drills kit and implants were placed(Control), artificial bony defect was created with Apaceram drills kit around the implant sites and implants were placed(Experimental I), bony defect was filled with porous hydroxyapatite granules(Experimental II). Thereafter, rabbits were sacrificed at 8th week and specimens were prepared and pushout tested for shear bond strength of bone-implant interface immediately. Undecalcified and decalcified specimens were prepared with Vilanueva and hematoxylin-eosin stain for light microscopic finding. The results of this study were as follows. 1. In the control group, mean shear strength of bone-implant interface was $2.614{\pm}0.680$ MPa, experimental I was $0.664{\pm}0.322$ MPa, and experimental II was $2.281{\pm}0.606$ MPa. There was significant difference between control and experimental I, between experimental I and experimental II, but did not show significant difference between control and experimental II statistically. 2. In the bony formation surrounding IMZ implant of the three groups, that of cortical bone is more advanced than cancellous bone area. 3. In the histological findings of undecalcified specimens, control and experimental II showed more than 50% of bony or osteoid formation at the bony-implant interface. 4. In the histological findings of undecalcified specimens, experimental I showed less than 50% of bony or osteoid formation at the interface, and observed partial bony defect in the coronal zone. 5. In the experimental II group, were observed direct bony contact to hydroxyapatite granules, and infiltration of a few giant cells. 6. No inflammatory responses were seen around the titanium implants and the hydroxyapatite granules.

  • PDF

Oxidation Behavior at the Interface between E-beam Coated $ZrO_{2}$-7wt.%$Y_{2}O}_{3}$and Plasma Sprayed CoNiCrAlY (전자빔 코팅 및 플라즈마 용사에 의한 안정화지르코니아/CoNiCrAlY 계면의 산화거동)

  • Choi, Won-Seop;Kim, Young-Do;Jeon, Hyeong-Tag;Kim, Hyon-Tae;Yoon, Kook-Han;Hong, Kyung-Tae;Park, Jong-Ku;Park, Won-Sik
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.538-544
    • /
    • 1998
  • The spallation of a thermal barrier coating layer depends on the formation of brittle spinels. thermal expansion mismatch between ceramic and metal. the phase transformation of a ceramic layer and residual stress of coating layer. In this work. the formation mechanism of oxide scale formed by oxidation treatment at 90$0^{\circ}C$ was investigated in order to verify oxidation behavior at the interface between E-beam coated $Zr0_2$-7wt.% $Y_20_3$ and plasma sprayed CoNiCrAIY. Some elements distributed in the bond coating layer were selectively oxidized after oxidation. At the initial time of oxidation. AI-depletion zone and $\alpha$-$Al_O_3$,O, were formed at the bond coating layer by the AI-outward diffusion. After layer grew until critical thickness. spinels. $Cr_20$, and $C0_2CrO_4$ by outward diffusion of Co. Cr, Ni were formed. It was found that the formation of spinels may be related to the spallation of $Zr0_2$-7wt.% $Y_20_3$ during isothermal oxidation.

  • PDF

Effect of Oxidation of Bond Coat on Failure of Thermal Barrier Coating (Bond Coat의 산화가 Thermal Barrier Coating의 파괴에 미치는 영향)

  • 최동구;최함메;강병성;최원경;최시경;김재철;박영규;김길무
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.88-94
    • /
    • 1997
  • The oxidation behavior of the NiCrAlY bond coat and thermal fatigue failure in the plasma-sprayed thermal barrier coating system, ZrO2.8wt%Y2O3 top coat/Ni-26Cr-5Al-0.5Y bond coat/Hastelloy X superalloy substrate, in commercial use for finned segment of gas turbine burner were investigated. The main oxides formed in the bond coat were NiO, Cr2O3, and Al2O3. It divided the oxide distribution at this interface into two types whether an Al2O3 thin layer existed beneath ZrO2/bond coat interface before operation at high temperature or not. While a continuous layer of NiO was formed mainly in the region where the Al2O3 thin layer was present, the absence of it resulted in the formation of mixture of Cr2O3 and Al2O3 beneath NiO layer. Analyses on the fracture surface of specimen spalled by thermal cycling showed that spalling occurred mainly along the ceram-ic coat near ZrO2/bond coat oxide layer interface, but slightly in the oxide layer region.

  • PDF