Browse > Article
http://dx.doi.org/10.3740/MRSK.2014.24.2.116

Characteristics of Plasma Sprayed BSCCO Superconductor Coatings with Annealing Time After Partial Melt Process  

Park, Jeong-Sik (Department of Ophthalmic Optics, Daegu Health College)
Lee, Seon-Hong (Corporate R&D Center, Samsung SDI Co. Ltd.)
Park, Kyeung-Chae (Department of Materials Science and Metallurgy, Kyungpook National University)
Publication Information
Korean Journal of Materials Research / v.24, no.2, 2014 , pp. 116-122 More about this Journal
Abstract
$Bi_2Sr_2CaCu_2O_x$(Bi-2212) and $Bi_2Sr_2Ca_2Cu_3O_y$(Bi-2223) high-Tc superconductors(HTS) have been manufactured by plasma spraying, partial melt process(PMP) and annealing treatment(AT). A Bi-2212/2223 HTS coating layer was synthesized through the peritectic reaction between a 0212 oxide coating layer and 2001 oxide coating layer by the PMP-AT process. The 2212 HTS layer consists of whiskers grown in the diffusion direction. The Bi-2223 phase and secondary phase in the Bi-2212 layer were observed. The secondary phase was distributed uniformly over the whole layer. As annealing time goes on, the Bi-2212 phase decreases with mis-orientation and irregular shape, but the Bi-2223 phase increases because a new Bi-2223 phase is formed inside the pre-existing Bi-2212 crystals, and because of the nucleation of a Bi-2223 phase at the edge of Bi-2212 crystals by diffusion of Ca and Cu-O bilayers. In this study the spray coated layer showed superconducting transitions with an onset Tc of about both 115 K, and 50 K. There were two steps. Step 1 at 115 K is due to the diamagnetism of the Bi-2223 phase and step 2 at 50 K is due to the diamagnetism of the Bi-2212 phase.
Keywords
plasma spray; BSCCO superconductor; PMP(partial melt process); Bi-2212/2223 phase; annealing time;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. H. Cho, S. H. Lee and K. C. Park, J. Kor. Int. Met. Mater., 44(7), 497 (2006).
2 H. Nadifi, A. Ouali, C. Grigorescu, H. Faqir, O. Monnereau, L. Tortet, G. Vacquier and C. Boulesteix, Supercond. Sci. Technol., 13(8), 1174 (2000).   DOI
3 M. D. Sumption, X. Peng, E. Lee, F. Buta, M. Tomsic and E. W. Col l ings, IEEE Trans. Appl. Supercond., 13(3), 3486 (2003).   DOI
4 Y. Feng, Y. Zhao, A. K. Pradhan, L. Zhou, P. X. Zhang, X. H. Liu, P. Ji, S. J. Du, C. F. Liu and Y. Wu, Supercond. Sci. Technol., 15(1), 12 (2002).   DOI   ScienceOn
5 Y. Yamada, F. Yamashita, K. Wada and K. Tachikawa, J. Jpn. Inst. Matals. 61(9), 836 (1997).
6 A. Y. Ilyushechkin, T. Yamashita, L. Boskovic and I. Mackinnon, Supercond. Sci. Technol., 17(10), 1201 (2002).
7 A. Y. Ilyushechkin, T. Yamashita and I. Mackinnon, Physica C 377(3), 362 (2002).   DOI
8 V. V. Pankov and P. Strobel, Physica C, Superconductivity, 235-240(1), 333 (1994).   DOI
9 R. Inoue, H. Kitano, T. Hanaguri and A. Maeda, Adv. Superconductivity, 11(1), 121 (1998).