Browse > Article
http://dx.doi.org/10.3740/MRSK.2004.14.3.218

Thermoelectric Properties of p- type FeSi2 Processed by Mechanical Alloying and Plasma Thermal Spraying  

Choi Mun-Gwan (충주대학교 신소재공학과/나노기술연구소)
Ur Soon-Chul (충주대학교 신소재공학과/나노기술연구소)
Kim IL-Ho (충주대학교 신소재공학과/나노기술연구소)
Publication Information
Korean Journal of Materials Research / v.14, no.3, 2004 , pp. 218-223 More about this Journal
Abstract
P-type $\beta$-FeSi$_2$ with a nominal composition of $Fe_{0.92}Mn_{0.08}Si_2$ powders has been produced by mechanical alloying process. As-milled powders were spray dried and consolidated by atmospheric plasma thermal spraying as a rapid sintering process. As-milled powders were of metastable state and fully transformed to $\beta$-$FeSi_2$ phase by subsequent isothermal annealing. However, as-thermal sprayed $Fe_{0.92}Mn_{0.08}Si_2$ consisted of untransformed mixture of $\alpha$-$Fe_2Si_{5}$ and $\varepsilon$-FeSi phases. Isothermal annealing has been carried out to induce transformation to the thermoelectric semiconducting $\beta$-$FeSi_2$ phase. Isothermal annealing at $845^{\circ}C$ in vacuum gradually led to the thermoelectric semiconducting $\beta$-$FeSi_2$ phase transformation, but some residual metallic $\alpha$ and $\varepsilon$ phases were unavoidable even after prolonged annealing. Thermoelectric properties of $\beta$-$FeSi_2$ materials before and after isothermal annealing were evaluated. Seebeck coefficient increased and electric conductivity decreased with increasing annealing time due to the phase transition from metallic phases to semiconducting phases. Thermoelectric properties showed gradual increment, but overall properties appeared to be inferior to those of vacuum hot pressed specimens.
Keywords
${\bata}-FeSi_2$; mechanical alloying; plasma thermal spray; spray drying; vacuum hot pressing; thermoelectric;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Smithells Metals Reference Book, eds. by E. A. Brandes and G. B. Brook, 7th ed., ASM international, 8-55 (1997)
2 S.-C Ur and I.-H. Kim, J. of KMRS, 11(2), 132, (2001)
3 S.-C. Ur, P. Nash and G. T. Higgins, Scripta Materialia 34(1), 53 (1996)   DOI   ScienceOn
4 M. Uemoto, Materials Transaction, JIM, 36, 373 (1995)   DOI
5 D.-B. Hyun, KIST Research Report, UCE1424-5888, 159 (1996)
6 K.Ueno, S. Sodeoka, M Susuki, A. Tsutsumi, K. Karamoto, J. Sawazaki, K. Yoshida, H. Huang, K. Nagai, H. Kondo, and S. Nakahama, Proc. 17th Int'l Conf. on Thermoelectrics, May 24-28, Nagoya, Japan, 418 (1998)
7 J. S. Benjamin, Met. Trans, 1, 1943 (1970)   DOI
8 D. M. Rowe and V. S. Schuka, J. Appl. Phys., 52(12), 7421 (1981)   DOI   ScienceOn
9 S.-C. Ur and I.-H. Kim, Materials Letters, 57(3), 543 (2002)   DOI   ScienceOn
10 S. M. Meier, D. K. Gupta and K. D. Sheffler: JOM, Mar. 50 (1981)
11 S.-Y. Hwang, B.-G. Seong and M.-C. Kim, J. of KPMI, 3(2), 79 (1996)
12 D.-S. Seo, Monthly Ceramics, 5, 72 (1992)
13 I. Yamauchi, I. Ohnaka and S. Uyema, Proc. 12th Int'l Conf. on Thermoelectrics, Nov. 9-11, Yokohama, Japan, 289 (1993)
14 S. Shiga, K. Fujimoto and M. Umemoto, Proc. 12th Int'l Conf. on Thermoelectrics, Nov. 9-11, Yokohama, Japan, 311 (1993)
15 I. Nishida, Phy. Rev., B7, 2710 (1971)   DOI
16 U. Birkholtz and J. Schelm, Phy. Stat. Sol., 27, 413 (1968)   DOI
17 R. M. Ware and D. J. McNeil, Proc. IEE, 111(1), 178 (1964)
18 U. Birkholz and J. Scheim, Fiz. Stat. Sol, 27, 413 (1968)   DOI
19 P. Y. Dusausay, J. Protas, R. Wandi and B. Roques, Acta Crystal., B27(1), 209 (1971)
20 S. Tokita, T. Amano, M. Okabayashi and I. A. Nishida, Proc. 12th Int'l Conf. on Thermoelectrics, Nov. 9-11, Yokohama, Japan, 197 (1993)
21 I. Isoda, Y. Shinohara, Y. Imai, J. A. Nishida and O. Ohashi, Proc. 17th Int'l Conf. on Thermoelectrics, May 24-28, Nagoya, Japan, 390 (1998)