• 제목/요약/키워드: plasma treatment

검색결과 3,064건 처리시간 0.029초

Influence of Allylamine Plasma Treatment Time on the Mechanical Properties of VGCF/Epoxy

  • Khuyen, Nguyen Quang;Kim, Jin-Bong;Kim, Byung-Sun;Lee, Soo
    • Advanced Composite Materials
    • /
    • 제18권3호
    • /
    • pp.221-232
    • /
    • 2009
  • The allylamine plasma treatment is used to modify the surface properties of vapor grown carbon fibers (VGCF). It is to improve the interfacial bonding between the VGCF and epoxy matrix. The allylamine plasma process was performed by batch process in a vacuum chamber, using gas injection followed by plasma discharge for the durations of 20, 40 and 60 min. The interdependence of mechanical properties on the VGCF contents, treatment time and interfacial bonding between VGCF/ep was investigated. The interfacial bonding between VGCF and epoxy matrix was observed by scanning electron microscopy (SEM) micrographs of nanocomposites fracture surfaces. The changes in the mechanical properties of VGCF/ep, such as the tensile modulus and strength were discussed. The mechanical properties of allylamine plasma treated (AAPT) VGCF/ep were compared with those of raw VGCF/ep. The tensile strength and modulus of allyamine plasma treated VGCF40 (40 min treatment)/ep demonstrated a higher value than those of other samples. The mechanical properties were increased with the allyamine plasma treatment due to the improved adhesion at VGCF/ep interface. The modification of the carbon nanofibers surface was observed by transmission electron microscopy (TEM). SEM micrographs showed an excellent dispersion of VGCF in epoxy matrix by ultrasonic method.

Atmospheric Plasma Treatment on Copper for Organic Cleaning in Copper Electroplating Process: Towards Microelectronic Packaging Industry

  • Hong, Sei-Hwan;Choi, Woo-Young;Park, Jae-Hyun;Hong, Sang-Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권3호
    • /
    • pp.71-74
    • /
    • 2009
  • Electroplated Cu is a cost efficient metallization method in microelectronic packaging applications. Typically in 3-D chip staking technology, utilizing through silicon via (TSV), electroplated Cu metallization is inevitable for the throughput as well as reducing the cost of ownership (COO).To achieve a comparable film quality to sputtering or CVD, a pre-cleaning process as well as plating process is crucial. In this research, atmospheric plasma is employed to reduce the usage of chemicals, such as trichloroethylene (TCE) and sodium hydroxide (NaHO), by substituting the chemical assisted organic cleaning process with plasma surface treatment for Cu electroplating. By employing atmospheric plasma treatment, marginally acceptable electroplating and cleaning results are achieved without the use of hazardous chemicals. The experimental results show that the substitution of the chemical process with plasma treatment is plausible from an environmentally friendly aspect. In addition, plasma treatment on immersion Sn/Cu was also performed to find out the solderability of plasma treated Sn/Cu for practical industrial applications.

Treatment of Refractory Melasma with Microwave-generated, Atmospheric-pressure, Non-thermal Nitrogen Plasma

  • Kim, Hyun-Jo;Kim, Heesu;Kim, Young Koo;Cho, Sung Bin
    • Medical Lasers
    • /
    • 제8권2호
    • /
    • pp.74-79
    • /
    • 2019
  • Periorbital melasma is often refractory to treatment and highly associated with rebound hyperpigmentation or mottled hypopigmentation after laser treatment in Asian patients. In this report, we describe 2 patients with cluster-1 periorbital melasma and 1 patient with cluster-2 periorbital melasma who experienced remarkable clinical improvements after microwave-generated, atmospheric-pressure, non-thermal nitrogen plasma treatments. All patients exhibited limited clinical responses after combination treatments with topical bleaching agents, systemic oral tranexamic acid, and low-fluenced Q-switched neodymium (Nd):yttrium-aluminum-garnet (YAG) lasers. Low-energy nitrogen plasma treatment at 0.75 J elicited remarkable clinical improvement in the periorbital melasma lesions without post-laser therapy rebound hyperpigmentation and mottled hypopigmentation. We deemed that a single pass of nitrogen plasma treatment at 0.75 J induces mild microscopic thermal tissue coagulation and modification within the epidermis while preserving the integrity of the basement membrane in patients with periorbital melasma. Accordingly, nitrogen plasma-induced dermal tissue regeneration could play a role in the treatment of melasma lesions.

Efficacy of plasma treatment for surface cleansing and osseointegration of sandblasted and acid-etched titanium implants

  • Gang-Ho Bae;Won-Tak Cho;Jong-Ho Lee;Jung-Bo Huh
    • The Journal of Advanced Prosthodontics
    • /
    • 제16권3호
    • /
    • pp.189-199
    • /
    • 2024
  • PURPOSE. This study was conducted to evaluate the effects of plasma treatment of sandblasted and acid-etched (SLA) titanium implants on surface cleansing and osseointegration in a beagle model. MATERIALS AND METHODS. For morphological analysis and XPS analysis, scanning electron microscope and x-ray photoelectron spectroscopy were used to analyze the surface topography and chemical compositions of implant before and after plasma treatment. For this animal experiment, twelve SLA titanium implants were divided into two groups: a control group (untreated implants) and a plasma group (implants treated with plasma). Each group was randomly located in the mandibular bone of the beagle dog (n = 6). After 8 weeks, the beagle dogs were sacrificed, and volumetric analysis and histometric analysis were performed within the region of interest. RESULTS. In morphological analysis, plasma treatment did not alter the implant surface topography or cause any physical damage. In XPS analysis, the atomic percentage of carbon at the inspection point before the plasma treatment was 34.09%. After the plasma treatment, it was reduced to 18.74%, indicating a 45% reduction in carbon. In volumetric analysis and histometric analysis, the plasma group exhibited relatively higher mean values for new bone volume (NBV), bone to implant contact (BIC), and inter-thread bone density (ITBD) compared to the control group. However, there was no significant difference between the two groups (P > .05). CONCLUSION. Within the limits of this study, plasma treatment effectively eliminated hydrocarbons without changing the implant surface.

치료저항성 정신분열병 환자에서 반복적 경두개자기자극술 병행치료시 혈장 BDNF 농도 변화 : 예비 연구 (Alteration in Plasma BDNF Level after Repetitive Transcranial Magnetic Stimulation(rTMS) in Treatment-Resistant Schizophrenia : A Pilot Study)

  • 오소영;김용구
    • 생물정신의학
    • /
    • 제16권3호
    • /
    • pp.170-180
    • /
    • 2009
  • Objectives : To assess clinical improvement and change in plasma brain-derived neurotrophic factor(BDNF) level after repetitive transcranial magnetic stimulation(rTMS) in patients with treatment-resistant schizophrenia. Methods : Seven patients with DSM-IV schizophrenia, who were proven to be treatment-resistant, were treated with 15 sessions of rTMS for three weeks as an adjuvant therapy to antipsychotic treatment. Clinical improvement and change in plasma BDNF level were measured after the treatment period. The symptom severity was assessed with the Positive and Negative Syndrome Scale(PANSS) and the Korean Version of Calgary Depression Scale for Schizophrenia(K-CDSS) at baseline and 7 days after the treatment. Plasma BDNF level was measured by enzyme-linked immunosorbent assay(ELISA) at baseline and 7 days after the treatment. Results : After the rTMS treatment, there was no significant improvement in PANSS total score(Z=-1.693, p=0.090) and no significant change in plasma BDNF was found(Z=-1.183, p=0.237). Negative correlations were found between percentage change in PANSS positive subscale score and duration of illness(rho=-0.991, N=7, p<0.0005, two-tailed), and PANSS negative subscale score at baseline and percentage change in plasma BDNF level(rho=-0.821, N=7, p=0.023, two-tailed). Conclusion : This preliminary study suggests that rTMS didn't make a significant change in clinical symptoms nor in plasma BDNF level in treatment-resistant schizophrenia. Percentage change in plasma BDNF, however, might be correlated with treatment resistance in schizophrenic patients. This is a pilot study with a small sample size, therefore, a further study with a larger sample size is needed.

  • PDF

습식공정으로 형성된 구리산화물 나노와이어의 전계방출특성 향상 (Enhancement of Field Emission Characteristics of CuO Nanowires Formed by Wet Chemical Process)

  • 성우용;김왈준;이승민;이호영;박경호;이순일;김용협
    • 한국표면공학회지
    • /
    • 제37권6호
    • /
    • pp.313-318
    • /
    • 2004
  • Vertically-aligned and uniformly-distributed CuO nanowires were formed on copper-coated Si substrates by wet chemical process, immersing them in a hot alkaline solution. The effects of hydrogen plasma treatment on the field emission characteristics of CuO nanowires were investigated. It was found that hydrogen plasma treatment enhanced the field emission properties of CuO nanowires by showing a decrease in turn-on voltage, and an increase in emission current density, and stability of current-voltage curves. However, the excessive hydrogen plasma treatment made the I-V curves unstable. It was confirmed by XPS (X-ray Photoelectron Spectroscopy) analysis that hydrogen plasma treatment deoxidized CuO nanowires, thereby the work function of the nanowires decreased from 4.35 eV (CuO) to 4.1 eV (Cu). It is thought that the decrease in the work function enhanced the field emission characteristics. It is well-known that the lower the work function, the better the field emission characteristics. The results suggest that the hydrogen plasma treatment is very effective in achieving enhanced field emission properties of the CuO nanowires, and there may exist an optimal hydrogen plasma treatment condition.

대기압 저온 플라즈마 처리에 의한 폴리이미드의 친수화 효과 (Hydrophilic Effect of the Polyimide by Atmospheric Low-temperature Plasma Treatment)

  • 조중희;강방권;김경수;최병규;김세훈;최원열
    • 한국전기전자재료학회논문지
    • /
    • 제18권2호
    • /
    • pp.148-152
    • /
    • 2005
  • Atmospheric low-temperature plasma was produced using dielectric barrier discharge (DBD) plate-type plasma reactor and high frequency of 13.56 Hz. The surfaces of polyimide films for insulating and packaging materials were treated by the atmospheric low-temperature plasma. The contact angle of 67$^{\circ}$ was observed before the plasma treatment. The contact angle was decreased with deceasing the velocity of plasma treatment. In case of oxygen content of 0.2 %, electrode gap of 2 mm, the velocity of plasma treatment of 20 mm/sec, and input power of 400 W, the minimum contact angle of 13$^{\circ}$ was observed. The chemical characteristics of polyimide film after the plama treatment were investigated using X-ray photoelectron spectroscopy (XPS), and new carboxyl group bond was observed. The surfaces of polyimide films were changed into hydrophilic by the atmospheric low-temperature plasma. The polyimide films having hydrophilic surface will be very useful as a packaging and insulating materials in electronic devices.

산소 플라즈마 처리한 탄소나노튜브의 표면상태와 전계방출 특성 (Surface States and Field Emission Properties of Oxygen Plasma Treated Carbon Nanotubes)

  • 이선우;이붕주;박구범;신백균
    • 전기학회논문지
    • /
    • 제62권3호
    • /
    • pp.376-379
    • /
    • 2013
  • Multi-walled carbon nanotubes (MWCNTs) were synthesized using catalytic chemical vapor deposition (CVD) method. Oxygen plasma treatment was applied to modify surface state of the CNTs synthesized for improvement of field emission performance. Surface state of the plasma treated CNTs was studied by X-ray photoelectron spectroscopy (XPS). The surface states of the CNTs were changed as a function of plasma treatment time. The oxygen related carbon shift was moved toward higher binding energy with the plasma treatment time. This result implies that the oxygen plasma treatment changes the surface state effectively. While any shift in carbon 1s peak was not detected for the as grown CNTs, oxygen related carbon shift was detected for the plasma treated CNTs. Carbon shift implies that closed CNT tips were opened by the oxygen plasma and reacted with oxygen species. Since the field emission occurs at pentagons or dangling bonds of the CNT tips, the increase of carbon-oxygen bonds plays an important role in field emission behavior by increasing the number of electron emission sites resulting in improvement of the field emission performance.

불소수지의 무전해 동도금을 위한 단계적 플라즈마 전처리법에 관한 연구 (Study on Two Step Plasma Treatment for Electroless Cu Plating of Fluoropolymer)

  • 신승한;한성호;김영석
    • 한국표면공학회지
    • /
    • 제38권3호
    • /
    • pp.118-125
    • /
    • 2005
  • Low temperature plasma treatment with different gases and rf powers were performed to improve the adhesion strength between polytetrafluoroethylene(PTFE) and electroless deposited copper. According to the research, $H_2$ plasma having hydrogen radical was more effective in surface polarity modification than $O_2$ plasma due to the defluorination reaction. However, surface roughness of PTFE was more increased with $O_2$ than $H_2$ plasma. PTFE treated with $120W-O_2$ plasma and $250w-H_2$ plasma, consecutively showed rougher surface than single step $250w-H_2$ plasma treated one and more hydrophilic than single step $120W-O_2$ plasma treated one. And it showed 5B tape test grade, which is better adhesion property than 1B or 3B obtained by single step plasma treatment. In addition, adhesion strength between PTFE and Cu deposit is also deeply affected by residual water on its interface.

O$_2$ 플라즈마 처리에 의한 ITO 표면개질 변화에 따른 유기 EL 소자 특성 (Modifications of ITO Surfaces in Organic EL Devices by $O_2$ Plasma Treatment)

  • 박상무;김형권;이덕출
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권6호
    • /
    • pp.261-266
    • /
    • 2003
  • We investigated the effect of oxygen plasma treatment of indium-tin oxide(ITO) surface on the performance of electroluminescence(EL) devices. ITO surface treated oxygen plasma has been analyzed using atomic force microscope(AFM) and X-ray photoelectron spectroscopy(XPS), to investigate the relations between the properties of the ITO surface and the properties of the current-voltage-luminance(I-V-L) characteristics of the fabricated OLED with the structure of ITO(plasma treatment) / TPD / Alq$_3$/ Al. It is found that the oxygen plasma treatment of ITO anode improve the hole injection of the OLED due to the modification of the surface states. The treated ITO anode nay be low voltage with high luminance efficiency.