• Title/Summary/Keyword: plasma surface cleaning

Search Result 100, Processing Time 0.038 seconds

A Study on Adhesion Characteristics for Rubber Parts of Footwear Containing Plasma Treatment (플라즈마 처리에 의한 신발용 고무부품의 접착특성 연구)

  • Jeong, Booyoung;Cheon, Jungmi;Lee, Sangjin;Moon, Jinbok;Chun, Jaehwan
    • Journal of Adhesion and Interface
    • /
    • v.14 no.3
    • /
    • pp.111-116
    • /
    • 2013
  • In this study, we studied surface and adhesion properties with plasma treatment for substitution of buffing and solvent-cleaning in footwear adhesion process. The distance between nozzle and rubber parts was decreased with decreasing the contact angle. And when a speed of plasma treatment increased, the contact angle increased. The result of surface roughness, Ra and Rz increased in 20% and 16% after the plasma treatment. The distance of between nozzle and rubber parts was decreased with decreasing the peel strength. And the speed of plasma treatment was increased with decreasing the peel strength.

Industrial application of WC-TiAlN nanocomposite films synthesized by cathodic arc ion plating system on PCB drill

  • Lee, Ho. Y.;Kyung. H. Nam;Joo. S. Yoon;Jeon. G. Han;Young. H. Jun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.06a
    • /
    • pp.3-3
    • /
    • 2001
  • Recently TiN, TiAlN, CrN hardcoatings have adapted many industrial application such as die, mold and cutting tools because of good wear resistant and thermal stability. However, in terms of high speed process, general hard coatings have been limited by oxidation and thermal hardness drop. Especially in the case of PCB drill, high speed cutting and without lubricant process condition have not adapted these coatings until now. Therefore more recently, superhard nanocomposite coating which have superhard and good thermal stability have developed. In previous works, WC-TiAlN new nanocomposite film was investigated by cathodic arc ion plating system. Control of AI concentration, WC-TiAlN multi layer composite coating with controlled microstructure was carried out and provides additional enhancement of mechanical properties as well as oxidation resistance at elevated temperature. It is noted that microhardness ofWC-TiA1N multi layer composite coating increased up to 50 Gpa and got thermal stability about $900^{\circ}C$. In this study WC-TiAlN nanocomposite coating was deposited on PCB drill for enhancement of life time. The parameter was A1 concentration and plasma cleaning time for edge sharpness maintaining. The characteristic of WC-TiAlN film formation and wear behaviors are discussed with data from AlES, XRD, EDS and SEM analysis. Through field test, enhancement of life time for PCB drill was measured.

  • PDF

A study on the formation and removal of residue and damaged layer on the overched silicon surface during the contact oxide etching using $C_4$F$_8$/H$_2$ helicon were plasmas (C$_4$F$_8$/H$_2$ helicon were 플라즈마를 이용한 contact 산화막 식각 공정시 과식화된 실리콘 표면의 잔류막과 손상층 형성 및 이의 제거에 관항 연구)

  • 김현수;이원정;백종태;염근영
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.2
    • /
    • pp.117-126
    • /
    • 1998
  • In this study, the residue remaining on the silicon wafer during the oxide overetching using $C_4F_8/H_2$ helicon were plasmas and effects of various cleaning and annealing methods on the removal of the remaining residue were investigated. The addition of 30%$H_2$ to the C4F8 plasma increased the C/F ratio and the thickness of the residue on the etched silicon surface. Most of the residuse on the etched surfaces colud be removed by the oxygen plasmsa cleaning followed by thermal annealing over $450^{\circ}C$. Hydrogen-coataining residue formed on the silicon by 70%$C_4F_8/30%H_2$ helicon plasmas was more easily removed than hydrogen-free residue formed residue formed by $C_4F_8$ helicon wear plasmas. However, damage remaining on the silicon surface overetched using 70%$C_4F_8/30%H_2$ helicon plasmas was intensive and the degree of reocvery duing the post-annealing was lower.

  • PDF

A Study on Ashing Effects of Atmospheric Plasma for the Cleaning of Flat Panel Display (평판 디스플레이 세정을 위한 상압 플라즈마 에싱효과에 관한 연구)

  • Huh, Yong-Jeong;Lee, Gun-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.35-38
    • /
    • 2008
  • This study shows the improvement of PR-Ashing rates in semi-conductor process using Atmospheric Plasma. Taguchi method is used to improve Ashing rates of photo-resist that is spread on the surface of a wafer. Improvement of Ashing rates is acquired through the decision of the effective factors and suitable combination of the factors. The results show the contribution rate of each factor and the effectiveness of Plasma for PR-Ashing process in this system.

  • PDF

An Analysis of Vacuum Plasma Phenomena in DBD(Dielectric Barrier Discharges) (DBD(Dielectric Barrier Discharges)에서 전공 플라즈마 발생에 대한 해석적 연구)

  • Shin, Myoung-Soo;Cha, Sung-Hoon;Kim, Jong-Bong;Kim, Jong-Ho;Kim, Seong-Young;Lee, Hye-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.122-128
    • /
    • 2009
  • DBD(Dielectric Barrier Discharges) plasma is often used to clean the surface of semiconductor. The cleaning performance is affected mainly by plasma density and duration time. In this study, the plasma density is predicted by coupled simulation of flow, chemistry mixing and reaction, plasma, and electric field. 13.56 MHz of RF source is used to generate plasma. The effect of dielectric thickness, gap distance, and flow velocity on plasma density is investigated. It is shown that the plasma density increases as the dielectric thickness decreases and the gap distance increases.

Improvement of Solder Joint Strength in SAC 305 Solder Ball to ENIG Substrate Using LF Hydrogen Radical Treatment (SAC 305솔더와 ENIG 기판의 접합강도에 미치는 저주파 수소라디칼처리의 영향)

  • Lee, Ah-Reum;Jo, Seung-Jae;Park, Jai-Hyun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.99-106
    • /
    • 2011
  • Joint strength between a solder ball and a pad on a substrate is one of the major factors which have effects on electronic device reliability. The effort to improve solder joint strength via surface cleaning, heat treatment and solder composition change have been in progress. This paper will discuss the method of solder ball joint strength improvement using LF hydrogen radical cleaning treatment and focus on the effects of surface treatment condition on the solder ball shear strength and interfacial reactions. In the joint without radical cleaning, voids were observed at the interface. However, the specimens cleaned by hydrogen-radical didn't have voids at the interface regardless of cleaning time. The shear strength between the solder ball and the pad was increased over 120%(about 800gf) when compared to that without the radical treatment (680gf) under the same reflow condition. Especially, at the specimen treated for 5minutes, ball shear strength was considerably increased over 150%(1150gf). Through the observation of fracture surface and cross-section microstructure, the increase of joint strength resulted from the change of fracture mode, that is, from the solder ball fracture to IMC/Ni(P) interfacial fracture. The other cases like radical treated specimen for 1, 3, 7, 9min. showed IMC/solder interfacial fracture rather than fracture in the solder ball.

Synthesis and Spark-plasma Sinetring of Nanoscale Al/alumina Powder by Wire Electric Explosion Process

  • Kim, Ji-Soon;Kim, H. T.;Illyin, A. P.;Kwon, Young-Soon
    • Journal of Powder Materials
    • /
    • v.12 no.5 s.52
    • /
    • pp.351-356
    • /
    • 2005
  • Nanoscale Al powder with thin layer of alumina was produced by Wire Electric Explosion (WEE) process. Spark-Plasma Sintering (SPS) was performed for the produced powder to confirm the effectiveness of SPS like so-called 'surface-cleaning effect' and so on. Crystallite size and alumina content of produced powder varied with the ratio of input energy to sublimation energy of Al wire ($e/e_s$): Increase in ($e/e_s$) resulted in the decrease of crystallite size and the increase of alumina content. Shrinkage curve during SPS process showed that the oxide surface layer could not be destroyed near the melting point of Al. It implied that there was not enough or no spark-plasma effect during SPS for Al/Alumina powder.

Surface Wettability in Terms of Prominence and Depression of Diverse Microstructures and Their Sizes (다양한 형태의 실리콘 미세 구조물을 이용한 초소수성 표면형상 구현)

  • Ha, Seon-Woo;Lee, Sang-Min;Jeong, Im-Deok;Jung, Phill-Gu;Ko, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.679-685
    • /
    • 2007
  • Superhydrophobic surface, with a water contact angle greater than $150^{\circ}$, has a self-cleaning effect termed 'Lotus effect'. This surface is created by the combination of rough surface and the low surface energy. We proposed square pillar and square shapes to control surface roughness. Microstructure arrays are fabricated by DRIE(Deep Reactive Ion Etching) process and followed by PPFC(Plasma Polymerized Fluorocarbon) deposition. On the experimental result, contact angle at square pillar arrays is well matched with Cassie's model and largest contact angle is $173.37^{\circ}$. But contact angle of square pore shape arrays is lower than Cassie's theoretical contact angle about $5{\sim}10%$. Nevertheless, square pore arrays have more rigidity than square pillar arrays.

Performance enhancement of Organic Thin Film Transistor by Ar Ion Beam treatment (Ar Ion Beam 처리를 통한 Organic Thin Film Transistor의 성능향상)

  • Jung, Suk-Mo;Park, Jae-Young;Yi, Moon-Suk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.15-19
    • /
    • 2007
  • This paper reports the effects of Ar ion beam surface treatment on a $SiO_2$ dielectric layer in organic thin film transistors. We compared the electrical properties of pentacene-based OTFTs, treated by $O_2$ plasma or Ar ion beam treatments and characterized the states of the surface of the dielectric by using atomic force microscopy and X-ray photoelectron spectroscopy. For the sample which received $O_2$ plasma treatment, the mobility increased significantly but the on/off current ratio was found very low. The Ar ion beam-treated sample showed a very high on/off current ratio as well as a moderately improved mobility. XPS data taken from the dielectric surfaces after each of treatments exhibit that the ratio of between Si-O bonds and O-Si-O bonds was much higher in the $O_2$ plasma treated surface than in the Ar ion beam treated surface. We believe that our surface treatment using an inert gas, Ar, carried out an effective surface cleaning while keeping surface damage very low, and also the improved device performances was achieved as a consequence of improved surface condition.

Surface treatment of Si wafer for solar cell using reactive plasma method (반응성 플라즈마를 이용한 태양전지용 Si기판의 표면 처리)

  • Park, Byung-Wook;Kwak, Dong-Joo;Sung, Youl-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1305-1306
    • /
    • 2007
  • To lower the fabrication cost of silicon solar cells, a surface treatment using a dielectric barrier discharge instead of a wet cleaning technique was examined on electrode surfaces on silicon solar cells. The fill factor obtained through measuring current-voltage characteristics was evaluated, and the treated surface state was characterized by energy-dispersive X-ray. It was found that the dielectric barrier discharge effectively activated the electrode surface and the surface treatment on finger electrodes contributed greatly to improve the fill factor.

  • PDF