DOI QR코드

DOI QR Code

A Study on Adhesion Characteristics for Rubber Parts of Footwear Containing Plasma Treatment

플라즈마 처리에 의한 신발용 고무부품의 접착특성 연구

  • Jeong, Booyoung (Korea Institute of Footwear & Leather Technology) ;
  • Cheon, Jungmi (Korea Institute of Footwear & Leather Technology) ;
  • Lee, Sangjin (Korea Textile Machinery Research Institute) ;
  • Moon, Jinbok (Department of Footwear Fashion Industry, KyungNam College University of Information & Technology) ;
  • Chun, Jaehwan (Korea Institute of Footwear & Leather Technology)
  • 정부영 (한국신발피혁연구원 고분자표면연구실) ;
  • 천정미 (한국신발피혁연구원 고분자표면연구실) ;
  • 이상진 (한국섬유기계연구원 탄소섬유팀) ;
  • 문진복 (경남정보대학 신발패션산업과) ;
  • 천제환 (한국신발피혁연구원 고분자표면연구실)
  • Received : 2013.06.03
  • Accepted : 2013.09.09
  • Published : 2013.09.30

Abstract

In this study, we studied surface and adhesion properties with plasma treatment for substitution of buffing and solvent-cleaning in footwear adhesion process. The distance between nozzle and rubber parts was decreased with decreasing the contact angle. And when a speed of plasma treatment increased, the contact angle increased. The result of surface roughness, Ra and Rz increased in 20% and 16% after the plasma treatment. The distance of between nozzle and rubber parts was decreased with decreasing the peel strength. And the speed of plasma treatment was increased with decreasing the peel strength.

본 연구에서는 신발에 사용되는 고무부품의 접착에 있어서 버핑 및 용매 세척 등의 표면처리 공정을 대체하기 위하여, 플라즈마 처리를 통한 표면 및 접착특성을 알아보았다. 플라즈마 처리 시 분사노즐과 고무 시편과의 거리가 감소할수록 접촉각은 감소하였으며, 플라즈마 처리속도가 증가함에따라 접촉각은 증가하였다. 고무 시편의 표면조도 측정결과 플라즈마 처리 후 Ra 값은 20%, Rz 값은 16%가 증가하는 결과를 나타내었다. 플라즈마 발생 노즐과 고무시편과의 거리가 증가함에 따라 접착력은 감소하고, 플라즈마 처리속도가 증가함에 따라 접착력은 감소하였다.

Keywords

References

  1. F. Garbassi, M. Morra, and E. Occhiello, Polymer Surface, p. 350, John Willey and Sons, Chichester (1994).
  2. C. M. Chan, Polymer Surface Modification and Characterization, p. 20, Hanser Publishers, Cincinnati (1994).
  3. M. J. Choi, D. H. Kim, and G. N. Kim, J. Adhesion and Interface, 9, 1 (2008).
  4. L. M. Siperko, Appl. Spectrosc., 43, 226 (1989). https://doi.org/10.1366/0003702894203237
  5. J. Brass, D. M. Brewis, I. Sutherland, and R. Wiktorowicz, Int. J. Adhes., 11, 150 (1990).
  6. R. A. Bragole, Adhes. Age, 17, 24 (1978).
  7. S. J. Park, K. S. Cho, and S. H. Kim, Hwahak Konghak, 40, 613 (2002).
  8. R. Kruger and H. Potente, J. Adhes., 11, 113 (1980). https://doi.org/10.1080/00218468008078910
  9. V. L. Vakula and L. M. Pritykin, Polymer Adhesion Physico-chemical Principles, Ellis Horwood Ltd., New York (1991).
  10. D. L. Cho, Polym. Sci. Technol., 6, 499 (1995).
  11. M. Tatoulian, F. A.-Khonsari, N. S. Z. Ahmadi, and J. Amouroux, Int. J. Adhes., 15, 177 (1995). https://doi.org/10.1016/0143-7496(95)91629-K
  12. R. M. France and R. D. Short, J. Chem. Soc.-Faraday Trans., 93, 3173 (1997). https://doi.org/10.1039/a702311a
  13. S. R. Ryu and D. J. Lee, J. Korean Soc. Compos. Mater., 23, 5 (2010).
  14. J. Behnisch, A. Hollander, and H. Zimmermann, Int. J. Polymeric. Mater., 23, 215 (1994). https://doi.org/10.1080/00914039408029333
  15. F. Arefi, V. Andre, P. M.-Rahmati, and J. Amouroux., Pure Appl. Chem., 64, 715 (1992). https://doi.org/10.1351/pac199264050715
  16. W. Petasch, E. Rauchle, M. Walker, and P. Elsner, Surf. Coat. Technol., 74-75, 682 (1995). https://doi.org/10.1016/0257-8972(94)08209-X
  17. M. J. Shenton, M. C. L.-Hoare, and G. C. Stevens, J. Phys. D: Appl. Phys., 34, 2754 (2001). https://doi.org/10.1088/0022-3727/34/18/307