• 제목/요약/키워드: plasma source impedance

검색결과 39건 처리시간 0.037초

전송선로를 이용한 플라즈마 전력 전달 연구 (Research on Transmission Line Design for Efficient RF Power Delivery to Plasma)

  • 박인용;이장재;김시준;이바다;김광기;염희중;유신재
    • 반도체디스플레이기술학회지
    • /
    • 제15권2호
    • /
    • pp.6-10
    • /
    • 2016
  • In RF plasma processing, when the plasma is generated, there is the difference of impedance between RF generator and plasma source. Its difference is normally reduced by using the matcher and the RF power is transferred efficiently from the power generator to the plasma source. The generated plasma has source impedance that it can be changed during processing by pressure, frequency, density and so on. If the range of source impedance excesses the matching range of the matcher, it cannot match all value of the impedance. In this research, we studied the elevation mechanism of the RF power delivery efficiency between RF generator to the plasma source by using the transmission line and impedance tuning of the plasma source. We focus on two plasma sources (capacitive coupled plasma (CCP), inductive coupled plasma (ICP)) which is most widely used in industry recently.

축전 용량이 고려된 평판형 유도 결합 플라즈마 원의 등가회로 모델 (An equivalent Circuit Model of Transformer Coupled Plasma Source)

  • 김정미;권득철;윤남식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1760-1762
    • /
    • 2002
  • In this work we develop an equivalent circuit model of TCP(transformer coupled plasma) source and investigate matching characteristic. The developed circuit model includes transmission line, standard-type impedance matching network and displacement current in the plasma source. The impedance of TCP is calculated by previously developed program for various source parameters and dependance of components of matching impedance on the value of source impedance is investigated.

  • PDF

전기적 특성을 고려한 ICP Source 설계 (Design of an Inductively Coupled Plasma Source with Consideration of Electrical Properties and its Practical Issues)

  • 이상원
    • 한국진공학회지
    • /
    • 제18권3호
    • /
    • pp.176-185
    • /
    • 2009
  • ICP source의 성능과 구현 가능성은 impedance와 전기장, 자기장의 공간 분포에 큰 영향을 받는다. ICP source의 impedance는 ICP 안테나와 플라즈마의 impedance에 의해 결정된다. 안테나 설계에 있어서 안테나에 형성되는 고전압을 방지하고 공정 중 급격한 impedance 변화를 방지하기 위해서는 ICP source의 허수 impedance가 $-100\;ohm{\sim}+100\;ohm$의 영역에 존재하는 것이 유리하다. 플라즈마 균일도는 안테나에 흐르는 전류와 전압에 의해 형성되는 전기장 세기와 자기장 세기에 영향을 받는다. 원형 안테나와 대칭성이 개선된 안테나에 대해 전자기 simulation과 플라즈마 밀도의 공간분포를 측정하였으며 안테나 형태에 따른 전자기장과 플라즈마 밀도 분포의 개선을 확인하였다. 반경 방향 균일도를 조절하기 위해서는 일반적으로 지름이 다른 복수개의 안테나를 동심원 상에 배치하는 방법을 사용한다. 각 안테나들을 병렬로 연결한 경우 각각의 안테나의 임피던스에 따른 전류 분배 비율이 상이하며, 분배 비율을 조절하기 위해 코일 또는 capacitor를 연결할 경우 나타나는 현상을 계산하였다.

On the Possibility of Multiple ICP and Helicon Plasma for Large-area Processes

  • Lee, J.W.;An, Sang-Hyuk;Chang, Hong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.234.1-234.1
    • /
    • 2014
  • Many studies have been investigated on high density plasma source (Electron Cyclotron Resonance[ECR], Inductively Coupled Plasma[ICP], Helicon plasma) for large area source after It is announced that productivity of plasma process depends on plasma density. Among them, Some researchers have been studied on multiple sources In this study, we attempted to determine the possibility of multiple inductively coupled plasma (ICP), and helicon plasma sources for large-area processes. Experiments were performed with the one and two coils to measure plasma and electrical parameters, and a circuit simulation was performed to measure the current at each coil in the 2-coil experiment. Based on the result, we could determine the possibility of multiple ICP sources due to a direct change of impedance due to current and saturation of impedance due to the skin-depth effect. However, a helicon plasma source is difficult to adapt to the multiple sources due to the consistent change of real impedance due to mode transition and the low uniformity of the B-field confinement. As a result, it is expected that ICP can be adapted to multiple source for large-area processes.

  • PDF

A Three-Dimensional Calculation of the Reactor Impedance for Planar-Type Cylindrical Inductively Coupled Plasma Sources

  • Kwon, Deuk-Chul;Yoon, Nam-Sik
    • Applied Science and Convergence Technology
    • /
    • 제24권6호
    • /
    • pp.237-241
    • /
    • 2015
  • The reactor impedance is calculated for a planar-type cylindrical inductively coupled plasma source by expanding the electromagnetic fields into their Fourier-Bessel series forms including the three-dimensional shape of the antenna. The mode excitation method is utilized to determine the electromagnetic fields based on a Poynting theorem-like relationship. From the obtained electromagnetic fields, a tractable form of the reactor impedance is obtained as a function of various plasma and geometrical parameters and applied to carry out a parametric study.

임피던스 변화를 이용한 선형 대기압 DBD 플라즈마 밀도 측정 (Plasma Density Measurement of Linear Atmospheric Pressure DBD Source Using Impedance Variation Method)

  • 신기원;이환희;권희태;김우재;서영철;권기청
    • 반도체디스플레이기술학회지
    • /
    • 제17권2호
    • /
    • pp.16-19
    • /
    • 2018
  • The development speed of semiconductor and display device manufacturing technology is growing faster than the development speed of process equipment. So, there is a growing need for process diagnostic technology that can measure process conditions in real time and directly. In this study, a plasma diagnosis was carried out using impedance variation due to the plasma discharge. Variation of the measurement impedance appears as a voltage change at the reference impedance, and the plasma density is calculated using this. The above experiment was conducted by integrating the plasma diagnosis system and the linear atmospheric pressure DBD plasma source. It was confirmed that plasma density varies depending on various parameters (gas flow rate, $Ar/O_2$ mixture ratio, Input power).

Analysis of H-ICP Source by Noninvasive Plasma Diagnostics of Etching Process

  • Park, Kun-Joo;Kim, Min-Shik;Lee, Kwang-Min;Chae, Hee-Yeop;Lee, Hi-Deok
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.126-126
    • /
    • 2009
  • Noninvasive plasma diagnostic technique is introduced to analyze and characterize HICP (Helmholtz Inductively Coupled Plasma) source during the plasma etching process. The HICP reactor generates plasma mainly through RF source power at 13.56MHz RF power and RF bias power of 12.56MHz is applied to the cathode to independently control ion density and ion energy. For noninvasive sensors, the RF sensor and the OES (Optical emission spectroscopy) were employed since it is possible to obtain both physical and chemical properties of the reactor with plasma etching. The plasma impedance and optical spectra were observed while altering process parameters such as pressure, gas flow, source and bias power during the poly silicon etching process. In this experiment, we have found that data measured from these noninvasive sensors can be correlated to etch results. In this paper, we discuss the relationship between process parameters and the measurement data from RF sensor and OES such as plasma impedance and optical spectra and using these relationships to analyze and characterize H-ICP source.

  • PDF

Calculation of the Reactor Impedance of a Planar-type Inductively Coupled Plasma Source

  • Kwon, Deuk-Chul;Jung, Bong-Sam;Yoon, Nam-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권1호
    • /
    • pp.86-90
    • /
    • 2012
  • A two-dimensional nonlocal heating theory of planar-type inductively coupled plasma source has been previously reported with a filamentary antenna current model. However, such model yields an infinite value of electric field at the antenna position, resulting in the infinite self-inductance of the antenna. To overcome this problem, a surface current model of antenna should be adopted in the calculation of the electromagnetic fields. In the present study, the reactor impedance is calculated based on the surface current model and the dependence on various discharge parameters is studied. In addition, a simpler method is suggested and compared with the surface current calculation.

Development of the DC-RF Hybrid Plasma Source

  • 김지훈;천세민;강인제;이헌주
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.213-213
    • /
    • 2011
  • DC arc plasmatron is powerful plasma source to apply etching and texturing processing. Even though DC arc plasmatron has many advantages, it is difficult to apply an industry due to the small applied area. To increase an effective processing area, we suggest a DC-RF hybrid plasma system. The DC-RF hybrid plasma system was designed and made. This system consists of a DC arc plasmatron, RF parts, reaction chamber, power feeder, gas control system and vacuum system. To investigate a DC-RF hybrid plasma, we used a Langmuir probe, OES (Optical emission spectroscopy), infrared (IR) light camera. For RF matching, PSIM software was used to simulate a current of an impedance coil. The results of Langmuir probe measurements, we obtain a homogeneous plasma density and electron temperature those are about $1{\times}1010$ #/cm3 and 1~4 eV. The DC-RF hybrid plasma source is applied for plasma etching experimental, and we obtain an etching rate of 10 ${\mu}m$/min. through a 90 mm of reaction chamber diameter.

  • PDF

펄스 코로나 반응기에 대한 임피던스 분석 (A Study of Impedance Analysis for Pulsed Plasma Reactor)

  • 최영욱;이홍식;임근희;김태희;김종화;장길홍;신완호;송영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 E
    • /
    • pp.1601-1604
    • /
    • 1998
  • In this study, the impedance characteristic for wire-prate plused plasma reactor was analyzed by experiment. For this, rotary spark gap and MPC purse generator were used as power source. The reactor impedance decreases with increasing wire length and applied voltage. From this fundamental experiment, we deduced a method for the impedance matching between purse generator and pulsed plasma reactor.

  • PDF