• Title/Summary/Keyword: plasma Temperature

Search Result 2,555, Processing Time 0.028 seconds

AFM Studies on the Surface Morphology of Sb-doped $SnO_2$ Thin Films Deposited by PECVD (AFM을 이용한 PECVD에 의해 증착된 Sb-doped $SnO_2$ 박막의 표면형상에 관한 연구)

  • Yun, Seok-Yeong;Kim, Geun-Su;Lee, Won-Jae;Kim, Gwang-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.8
    • /
    • pp.525-531
    • /
    • 2000
  • Sb-doped tin oxide films were deposited on Cornig glass 1737 substrate by plasma enhanced chemical vapor deposition (PECVD) technique. The films deposited at different reaction parameters were then examined by using XRD and AFM. The relatively good crystalline thin film was formed at $450^{\circ}C$, input gas ratio R[$P_{SbCl}P_{{SnCl}_4}$]=1.12 and r.f. power 30W. The surface roughness of the film formed by PECVD compared to TCVD was more smooth. Higher concentration of Sb dopant, lower deposition temperature, and thinner thickness of deposited film led to de-creasing surface roughness of the formed thin films.

  • PDF

Thermal Durability of 4YSZ Thermal Barrier Coating Deposited by Electron Beam PVD (전자빔을 이용한 물리기상증착법으로 제조된 열차폐용 4 mol% YSZ 코팅의 내열특성)

  • Park, Chanyoung;Yang, Younghwan;Kim, Seongwon;Lee, Sungmin;Kim, Hyungtae;Lim, Daesoon;Jang, Byungkoog;Oh, Yoonsuk
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.460-466
    • /
    • 2013
  • 4 mol% Yttria-stabilized zirconia (4YSZ) coatings with $200{\mu}m$ thick are fabricated by Electron Beam Physical Vapor Deposition (EB-PVD) for thermal barrier coating (TBC). $150{\mu}m$ of NiCrAlY based bond coat is prepared by conventional APS (Air Plasma Spray) method on the NiCrCoAl alloy substrate before deposition of top coating. 4 mol% YSZ top coating shows typical tetragonal phase and columnar structure due to vapor phase deposition process. The adhesion strength of coating is measured about 40 MPa. There is no delamination or cracking of coatings after thermal cyclic fatigue and shock test at $850^{\circ}C$.

A Study of a Changing of Physical and Chemical Intra-structure on Si-DLC Film during Tribological Test (실리콘 함유 DLC 박막의 마찰마모 시험에 의한 물리적 특성 및 화학적 결합 구조 변화 고찰)

  • Kim, Sang-Gweon;Lee, Jae-Hoon;Kim, Sung-Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.3
    • /
    • pp.127-132
    • /
    • 2011
  • The silicon-containing Diamond-like Carbon (Si-DLC) film as an low friction coefficient coating has especially treated a different silicon content by plasma-enhanced chemical vapor deposition (PECVD) process at $500^{\circ}C$ on nitrided-STD 11 mold steel with (TMS) gas flow rate. The effects of variable silicon content on the Si-DLC films were tested with relative humidity of 5, 30 and 85% using a ball-on-disk tribometer. The wear-tested and original surface of Si-DLC films were analysed for an understanding of physical and chemical characterization, including a changing structure, via Raman spectra and nano hardness test. The results of Raman spectra have inferred a changing intra-structure from dangling bonds. And high silicon containing DLC films have shown increasing carbon peak ratio ($I_D/I_G$) values and G-peak values. In particular, the tribological tested surface of Si-DLC was shown the increasing hardness value in proportional to TMS gas flow rate. Therefore, at same time, the structure of the Si-DLC film was changed to a different intra-structure and increased hardness film with mechanical shear force and chemical reaction.

Surface Treatment of IHX Materials for VHTR (원자력 중간열교환기 열수송계 소재의 표면처리)

  • Lee, Byeong-U;Lee, Myeong-Hun;Bang, Gwang-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.35-50
    • /
    • 2012
  • $900^{\circ}C$이상 초고온 He-gas 분위기 또는 용융불화염 (molten salts, FLINAK) 환경에서 사용될 VHTR(Very High Temperature Reactor)의 IHX(Intermediate heat exchanger)용 열수송 구조재료로 가장 가능성이 높은 합금인 Inconel 617 및 Hastelloy X 상에 습식화학적, 물리적기상합성법(Vacuum arc-plasma과 RF magnetron sputtering) 및 pack cementation에 의한 표면개질 및 마이크로 초내열(refractory ceramics) 코팅층(TiN, TiCN, TiAlN, $Al_2O_3$, $TiO_2$)을 형성시켰다. 고온 장기사용 시 문제가 될 수 있는 고온에서의 조직변화, 미세구조와 상(phase)형성, 고온 부식 및 그에 따른 마모(wear resistance) 손상 등 이들 소재의 내열, 내식 및 내마모 물성을 개선하는 연구를 수행하였다. TiAlN 박막의 경우 공기분위기에서 N이 분해되나 치밀한 산화물($TiO_2/Al_2O_3$ layer)을 형성하여 내식성 있는 보호피막을 형성함으로 기판과의 열팽창 계수로 인한 박리가 발생하지 않아 보호피막으로 적합하였다. Pack cementation법에 의한 aluminiding(Al-Ni합금)도 He 및 공기분위기에서 고온물성의 저하를 가져오는 $Cr_2O_3$의 생성을 충분히 억제하고 있었으며 He 및 air 분위기에서 사용이 가능한 박막으로 여겨진다. 내열 및 내식성에 대한 실험을 종합한 결과, 공기분위기에서 사용할 수 없는 박막은 He-gas 및 FLINAK(LiF-NaF-KF) 용융염 분위기에서도 사용할 수 없었으며, He-gas, FLINAK 및 air 분위기에서 모두 사용이 가능한 박막으로는 Inconel 617에서는 $(TiO_2-)Al_2O_3$, TiAlN 및 Al-Ni이었고 Hastelloy에서는 Al-Ni 및 $Al_2O_3$가 가장 적당하였다.

  • PDF

Three-Dimensional Numerical Magnetohydrodynamic Simulations of Magnetic Reconnection in the Interstellar Medium

  • TANUMA SYUNITI;YOKOYAMA TAKAAKI;KUDOH TAKAHIRO;SHIBATA KAZUNARI
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.309-311
    • /
    • 2001
  • Strong thermal X-ray emission, called Galactic Ridge X-ray Emission, is observed along the Galactic plane (Koyama et al. 1986). The origin of hot ($\~$7 keV) component of GRXE is not known, while cool ($\~$0.8 keV) one is associated with supernovae (Kaneda et al. 1997, Sugizaki et al. 2001). We propose a possible mechanism to explain the origin; locally strong magnetic fields of $B_{local}\;\~30{\mu}G$ heat interstellar gas to $\~$7 keV via magnetic reconnection (Tanuma et al. 1999). There will be the small-scale (< 10 pc) strong magnetic fields, which can be observed as $(B)_{obs} \;\~3{\mu}G$ by integration of Faraday Rotation Measure, if it is localized by a volume filling factor of f $\~$ 0.1. In order to examine this model, we solved three-dimensional (3D) resistive magnetohydrodynamic (MHD) equations numerically to examine the magnetic reconnect ion triggered by a supernova shock (fig.l). We assume that the magnetic field is Bx = 30tanh(y/20pc) $\mu$G, By = Bz = 0, and the temperature is uniform, at the initial condition. We put a supernova explosion outside the current sheet. The supernova-shock, as a result, triggers the magnetic reconnect ion, and the gas is heatd to > 7 keV. The magnetic reconnect ion heats the interstellar gas to $\~$7 keV in the Galactic plane, if it occurs in the locally strong magnetic fields of $B_{local}\;\~30{\mu}G$. The heated plasma is confined by the magnetic field for $\~10^{5.5} yr$. The required interval of the magnetic reconnect ions (triggered by anything) is $\~$1 - 10 yr. The magnetic reconnect ion will explain the origin of X-rays from the Galactic ridge, furthermore the Galactic halo, and clusters of galaxies.

  • PDF

Growth Behavior of Thermally Grown Oxide Layer with Bond Coat Species in Thermal Barrier Coatings

  • Jung, Sung Hoon;Jeon, Soo Hyeok;Park, Hyeon-Myeong;Jung, Yeon Gil;Myoung, Sang Won;Yang, Byung Il
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.344-351
    • /
    • 2018
  • The effects of bond coat species on the growth behavior of thermally grown oxide (TGO) layer in thermal barrier coatings (TBCs) was investigated through furnace cyclic test (FCT). Two types of feedstock powder with different particle sizes and distributions, AMDRY 962 and AMDRY 386-4, were used to prepare the bond coat, and were formed using air plasma spray (APS) process. The top coat was prepared by APS process using zirconia based powder containing 8 wt% yttria. The thicknesses of the top and bond coats were designed and controlled at 800 and $200{\mu}m$, respectively. Phase analysis was conducted for TBC specimens with and without heat treatment. FCTs were performed for TBC specimens at $1121^{\circ}C$ with a dwell time of 25 h, followed by natural air cooling for 1 h at room temperature. TBC specimens with and without heat treatment showed sound conditions for the AMDRY 962 bond coat and AMDRY 386-4 bond coat in FCTs, respectively. The growth behavior of TGO layer followed a parabolic mode as the time increased in FCTs, independent of bond coat species. The influences of bond coat species and heat treatment on the microstructural evolution, interfacial stability, and TGO growth behavior in TBCs are discussed.

A Study on Transmuted Impurity Atoms Formed in Neutron-Irradiated ZnO Thin Films (중성자 조사한 ZnO 박막에 생성된 핵전환 불순물들에 대한 연구)

  • Kim, Sang-Sik;Seon, Gyu-Tae;Park, Gwang-Su;Im, Gi-Ju;Seong, Man-Yeong;Lee, Bu-Hyeong;Jo, Un-Gap;Han, Hyeon-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.7
    • /
    • pp.298-304
    • /
    • 2002
  • Transmuted impurity atoms formed in neutron-irradiated ZnO thin films were theoretically identified first and then experimentally confirmed by photoluminescence (PL). ZnO thin films grown by plasma-assisted molecular beam epitaxy were irradiated by neutron beam at room temperature. The ZnO films consist of eight constituent (Zn and O) isotropes, of which four are transmutable by neutron-irradiation; $^{64}$ , $^{68}$ Zn, $^{70}$ Zn and $^{18}$ O were expected to transmute into $^{65}$ Cu, $^{69}$ Ga, $^{71}$ Ga, and $^{19}$ F, respectively. The concentrations of these transmuted atoms were estimated in this study by considering natural abundance, neutron fluence and neutron cross section. The neutron-irradiated ZnO thin films were characterized by PL. In the PL spectra of the ZnO thin films, the Cu-related PL peaks were seen, but the Ga- or F-associated PL peaks were absent. This observation confirmed the existence of $^{65}$ Cu in the ZnO, but it could not do the formation of the other two. In this paper, the emission mechanism of Cu impurities is described and the reason for the absence of the Ga- or F-associated PL peaks is discussed as well.

Removal of Interface State Density of SiO2/Si Structure by Nitric Acid Oxidation Method (질산산화법을 이용한 SiO2/Si 구조의 계면결함 제거)

  • Choi, Jaeyoung;Kim, Doyeon;Kim, Woo-Byoung
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.118-123
    • /
    • 2018
  • 5 nm-thick $SiO_2$ layers formed by plasma-enhanced chemical vapor deposition (PECVD) are densified to improve the electrical and interface properties by using nitric acid oxidation of Si (NAOS) method at a low temperature of $121^{\circ}C$. The physical and electrical properties are clearly investigated according to NAOS times and post-metallization annealing (PMA) at $250^{\circ}C$ for 10 min in 5 vol% hydrogen atmosphere. The leakage current density is significantly decreased about three orders of magnitude from $3.110{\times}10^{-5}A/cm^2$ after NAOS 5 hours with PMA treatment, although the $SiO_2$ layers are not changed. These dramatically decreases of leakage current density are resulted from improvement of the interface properties. Concentration of suboxide species ($Si^{1+}$, $Si^{2+}$ and $Si^{3+}$) in $SiO_x$ transition layers as well as the interface state density ($D_{it}$) in $SiO_2/Si$ interface region are critically decreased about 1/3 and one order of magnitude, respectively. The decrease in leakage current density is attributed to improvement of interface properties though chemical method of NAOS with PMA treatment which can perform the oxidation and remove the OH species and dangling bond.

Enhancement of 1,3-Dihydroxyacetone Production from Gluconobacter oxydans by Combined Mutagenesis

  • Lin, Xi;Liu, Sha;Xie, Guangrong;Chen, Jing;Li, Penghua;Chen, Jianhua
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1908-1917
    • /
    • 2016
  • Wild strain L-6 was subjected to combined mutagenesis, including UV irradiation, atmospheric and room temperature plasma, and ion beam implantation, to increase the yield of 1,3-dihydroxyacetone (DHA). With application of a high-throughput screening method, mutant Gluconobacter oxydans I-2-239 with a DHA productivity of 103.5 g/l in flask-shake fermentation was finally obtained with the starting glycerol concentration of 120 g/l, which was 115.7% higher than the wild strain. The cultivation time also decreased from 54 h to 36 h. Compared with the wild strain, a dramatic increase in enzyme activity was observed for the mutant strain, although the increase in biomass was limited. DNA and amino acid sequence alignment revealed 11 nucleotide substitutions and 10 amino acid substitutions between the sldAB of strains L-6 and I-2-239. Simulation of the 3-D structure and prediction of active site residues and PQQ binding site residues suggested that these mutations were mainly related to PQQ binding, which was speculated to be favorable for the catalyzing capacity of glycerol dehydrogenase. RT-qPCR assay indicated that the transcription levels of sldA and sldB in the mutant strain were respectively 4.8-fold and 5.4-fold higher than that in the wild strain, suggesting another possible reason for the increased DHA productivity of the mutant strain.

Heat Spreading Properties of CVD Diamond Coated Al Heat Sink (CVD 다이아몬드가 코팅된 알루미늄 방열판의 방열 특성)

  • Yoon, Min Young;Im, Jong Hwan;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.297-302
    • /
    • 2015
  • Nanocrystalline diamond(NCD) coated aluminium plates were prepared and applied as heat sinks for LED modules. NCD films were deposited on 1 mm thick Al plates for times of 2 - 10 h in a microwave plasma chemical vapor deposition reactor. Deposition parameters were the microwave power of 1.2 kW, the working pressure of 90 Torr, the $CH_4/Ar$ gas ratio of 2/200 sccm. In order to enhance diamond nucleation, DC bias voltage of -90 V was applied to the substrate during deposition without external heating. NCD film was identified by X-ray diffraction and Raman spectroscopy. The Al plates with about 300 nm thick NCD film were attached to LED modules and thermal analysis was carried out using Thermal Transient Tester (T3ster) in a still air box. Thermal resistance of the module with NCD/Al plate was 3.88 K/W while that with Al plate was 5.55 K/W. The smaller the thermal resistance, the better the heat emission. From structure function analysis, the differences between junction and ambient temperatures were $12.1^{\circ}C$ for NCD/Al plate and $15.5^{\circ}C$ for Al plate. The hot spot size of infrared images was larger on NCD/Al than Al plate for a given period of LED operation. In conclusion, NCD coated Al plate exhibited better thermal spreading performance than conventional Al heat sink.