• Title/Summary/Keyword: planting date

Search Result 299, Processing Time 0.029 seconds

Ecological Characteristics of Local Collections of Eleocharis kuroguwai Ohwi. and Their Geographical Differentiation (올방개 지방수집종(地方蒐集種)들의 생태적(生態的) 특성(特性) 및 그의 지리적(地理的) 분화(分化)에 관한 연구(硏究))

  • Kwon, Yong-Woong;Seong, Ki-Yeong
    • Korean Journal of Weed Science
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 1983
  • To study ecological characteristics of Eleocharis kuroguwai occuring in Korea its propagules were collected from 6 locations from the northern part to the southern part of Korea (Chuncheon, Suweon, Iri, Jeonju, Gwangiu and Milyang) in 1981, cultured and replanted 3 times (May 20, June 5, June 20) in 1982. They flowered from August 5 to August 27 when they were planted on May 20, and from August 20 to August 27 when they were planted on Tune 20. Plant height, number of tillers and top fresh weight/$m^2$ were 50-90cm, 500-875, and 175-750g, respectively when they were planted on May 20, and 40-70cm, 250-625, 325-625g, respectively when they were planted on June 20. Number of tubers per plant were 0.98-1.98 when they were planted on May 20, and 1.81-2.87 when they were planted on June 20. Eleocharis kuroguwai from Chuncheon or Suweon was more open in plant type, shorter in plant height, narrower in diameter of pedicel and shorter in inflorescence than those from Iri, Jeonju or Gwangju. Each of the local collections may be regarded as different ecotype, based on the above differences in morphology and responses in growth and flowering to the planting dates. The results appear to imply that Eleocharis kuroguwai weeds occurring in various locations of Korea are different one another in competitive avility with rice crop.

  • PDF

Optimum Transplanting Date, Fertilizer Application Rate and Planting Density for Upland Cotton Culture after Naked Barley (맥후작 목화 재배 적정이식기, 시비량 및 재식밀도)

  • Kyu-Yong Chung;Bang-Myung Kae;Byeong-Han Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.3
    • /
    • pp.217-223
    • /
    • 1992
  • Cotton has been an important fiber crop in Korea for a long time. The objective of the study was to investigate the effects of planting and transplanting dates, transplanting density and fertilizer application rate on seed cotton and lint yields, and gross income for barley-cotton double cropping in southern part of Korea. Transplanting culture of upland cotton cultivar Mokpo 4 on June 10 to 20 produced 80 to 83% more in seed cotton yield and 79 to 82% more in lint yield compared with the yields of direct planted on June 10 just after harvesting naked-barley. Mokpo 4 was better than Suwon 17 and Paymaster for the transplanting culture after barley harvest in double cropping. Optimum fertilizer application rate was N 80-P$_2$O$_{5}$ 78-K$_2$O 106 kg /ha, and optimum transplanting density was 70$\times$20cm for the transplanting culture of upland cotton after barley in double cropping system. The highest total yields 5.03 to 5.09t /ha in barley-cotton double croppings were harvested in barley drill-seeding and cotton transplanting culture on June 10 to 20 compared with seed cotton yield 1.51t /ha of the cotton monoculture planted on May 1. Their gross income also was 40% more than that of the cotton monoculture, and 30% more than the cotton direct seeding just after barley harvest on June 10. Cotton intercropping between barley rows provided 2-11% more in gross income compared with cotton direct seeding after barley harvest on June 10. Of the cotton intercroppings between barley rows, cotton intercropping of one row between the barley rows of 60cm width provided 5 to 9% more in gross income than the other cotton intercroppings between barley rows.s.

  • PDF

Influences of Planting Density on Growth and Yield of Perilla frutescens BRITTON var. acuta KUDO (자소(紫蘇)의 재식밀도(栽植密度)가 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Park, Hi-Jin;Kim, Sang-Gon;Chung, Dong-Hee;Kwon, Byung-Sun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.3 no.2
    • /
    • pp.135-139
    • /
    • 1995
  • In order to determine the optimum planting density of Perilla frutescens which is suitable for the southern part of Korea, agronomic characters, yield of fresh stem, leaf and seed, and yield components were investigated grown in 1985 and 1986 at Mokpo Branch Station of Crop Experiment Station. The heading date was Aug. $14{\sim}15$ and the blooming period was Aug. $19{\sim}21$ regardless of the difference of plant density, but the longest stem length was 135cm in the plant density of $70{\time}40cm$ and the stem length in the plant density of $80{\time}40cm$ was 134cm. The quantity of fresh weight of stem and leaf and fresh weight of seed was high as 531kg/l0a in the plant density of $80{\time}40cm$. The positive correlation such as $0.7315^*,\;0.9024^{**}\;and\;0.7425^*$ were found between stem length and fresh weight of stem and leaf, stem length and fresh weight of seed, fresh weight of stem and leaf and fresh weight of seed and so high significance was recongnized. In the verification of significance of row spacing, the disperse of the stem length was $55.67^{**}$, that of fresh weight of stem and leaf is $268.50^*$, theat of fresh weight of seed was $16.00^{**}$ and high significance was recognized. In the verification of significance of intrarow spacing, the diperse of stem length was $54.21^{**}$, that of fresh weight of stem and leaf was $2,582.00^{**}$, that of fresh weight of seed was $48.00^{**}$ and then high significance was recognized. Accordingly, the proper plant density of perilla frutescens was 80cm of row $spacing{\time}40cm$ of intrarow spacing.

  • PDF

Ecological Characteristics of Local Collections of Sagittaria pygmaea Miq. and Sagittaria trifolia L. and Their Geographical Differentiation (올미와 벗풀 지방수집종(地方蒐集種)들의 생태적(生態的) 특성(特性) 및 그들의 지리적(地理的) 분화(分化)에 관한 연구(硏究))

  • Seong, Ki-Yeong;Kwon, Yong-Woon
    • Korean Journal of Weed Science
    • /
    • v.3 no.2
    • /
    • pp.129-136
    • /
    • 1983
  • To study ecological characteristics of Sagitiaria pygmaea and Sagittaria trifolia occurring in Korea their propagules were collected from 3 locations (Sagittaria pygmaea: Chuncheon, Suweon, Milyang; Sagittaria trifolia: Suweon, Iri, Jeonju) in 1981, cultured and replanted 4 times (May 20, June 5, June 20, July 5) in 1982. Sagitraria pygmaea from Suweon flowered earlier than those from Chuncheon and Milyang in the plants planted on May 20, but this was reversed in another planting dates. Three storied inflorescence was observed newly in Sagittaria pygmaea. Sagittaria pygmaea from Iri and Jeonju had more number of tillers, but less number of tubers per tiller than those from Suweon. Sagittaria rrifolia from Chuncheon flowered earlier than those from Suweon and Milyang. Sagirtaria trifolia from Milyang was narrower in the upper leaf width and less in the number of tubers per plant than those from Chuncheon and Suweon. Each of local collections may be regarded as different ecotype based on the above differences.

  • PDF

Quality and Fruit Productivity of the Second Truss Blooming Seedlings Depending on Concentration of Nutrient Solution in Cherry Tomato (양액 농도에 따른 방울토마토 2화방 개화묘의 소질 및 과실 생산성)

  • Lee, Mun Haeng
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.230-236
    • /
    • 2022
  • This study was carried out to produce two-flowered seedlings, harvest them early in a greenhouse, and extend the harvest period. This study was carried out to effectively produce the second truss blooming seedlings to harvest tomatoes early and extend the harvest period. For production of the second truss blooming seedlings (one stem), the nutrient solution EC was supplied at 1.5, 2.0, 2.5 dS·m-1, and dynamic management (3.0 → 3.5 → 4.5 dS·m-1). The seedling period was 60 days, which was 20-40 days longer than conventional seedlings, and 10 days longer than the first truss blooming seedlings (cube seedlings). The plant height was 78 and 77 cm in EC 2.5 dS·m-1 and dynamic management respectively, which was shorter than EC 1.5 dS·m-1 with 88 cm. As for the EC in the cube before formulation, dynamic management had the highest EC 5.5 dS·m-1, and the cube supplied with EC 1.5 dS·m-1 had the lowest. The production yield by treatment did not a difference among in the second truss blooming seedlings, but the first truss blooming seedlings showed lower productivity than second truss blooming seedlings. The second truss blooming seedling were harvested 35 days after planting on June 4, the first harvest date, and the first truss blooming were harvested in 42 days on June 11th. There was no difference in plant height and root growth due to bending at frequency planting. In the study on the production of the second truss blooming seedlings (two stem), the nutrient solution EC was supplied under 2.0, 2.5, 3.0 dS·m-1, and dynamic management (3.0 → 3.5 → 4.5 dS·m-1). The seedling period was 90 days, which was 40-50 days longer than conventional seedlings and 10 days longer than the first truss blooming seedlings (cube seedlings). Plant height was 80 and 81 cm in EC 2.0 dS·m-1 and 2.5 dS·m-1 respectively, but was the shortest at 73 cm in dynamic management. EC in the medium increased as the seeding period increased in all treatments. The dynamic management was the highest with EC 5.1 dS·m-1. There was no difference in yield among EC treatments in the second truss blooming seedlings, which had a longer seeding period of about 10 days, produced 15% more than the first truss blooming seedlings. In order to shorten the plant height of the second truss blooming seedlings, it is judged that the most efficient method is increasing the concentration of nutrient solution.

Effects of Different Altitudes and Cultivation Methods on Growth and Flowering Characteristics of Elsholtzia splendens (재배지대와 유형이 꽃향유의 생육 및 개화 특성에 미치는 영향)

  • Young Min Choi;Jin Jae Lee;Dong Chun Cheong;Hong Ki Kim;Hee Kyung Song;Seung Yoon Lee;So Ra Choi;Hyun Ah Han;Han Na Chu
    • Korean Journal of Plant Resources
    • /
    • v.37 no.4
    • /
    • pp.392-400
    • /
    • 2024
  • This study was conducted to find the flowering and growth characteristics according to the different altitudes (plains and mid-mountain regions) and cultivation methods (field and plastic houses cultivation) of Elsholtzia splendens. Experimental regions located at 12 meters and 500 meters above sea level were selected for the plains and the mid-mountain, respectively, and the same method was applied for cultivation management by different altitudes and cultivation methods. In the mid-mountain region, flower bud emergence (2-3 days), flowering (9 days), and full bloom (6-7 days) stages of Elsholtzia splendens were earlier than in the plains, and field cultivation was earlier than plastic house cultivation. The plant height, the main stem diameter, and the number of branches tended to increase gradually after an initial rapid growth at 59 to 69 days after planting date. The days of duration of sunshine (less than 8 hours) from the rainy season (June 20) to the period when vegetative growth increases gradually (59 to 69 days after planting) was 22 to 29 days and 26 to 35 days in the plains and the mid-mountain regions respectively, and this period was estimated time of transition from vegetative growth to reproductive growth. The spikes growth of Elsholtzia splendens by cultivation altitudes was higher in the mid-mountain region than in the plains, and there were no statistically significant differences in growth characteristics except for the main stem diameter, the number of branches, and the dry matter. Also, the amount of flowering and growth was higher in the plastic house cultivation compared to the field cultivation. As a result, some differences in flowering amount were observed when cultivating Elsholtzia splendens for landscaping purposes, but it was considered possible to cultivate in both plains and mid-mountain regions. This study therefore provides ecological information for understanding the relationship between weather characteristics and growth of Elsholtzia splendens.

Comparison of Seedling Quality of Cucumber Seedlings and Growth and Production after Transplanting according to Differences in Seedling Production Systems (육묘 생산 시스템 차이에 따른 오이 모종의 묘소질과 정식 후 생육 비교)

  • Soon Jae Hyeon;Hwi Chan Yang;Young Ho Kim;Yun Hyeong Bae;Dong Cheol Jang
    • Journal of Bio-Environment Control
    • /
    • v.33 no.2
    • /
    • pp.88-98
    • /
    • 2024
  • This study provides basic data on the growth and production of seedlings produced in plant factories with artificial lighting by comparing seedling quality, growth and fruit characteristics, and production after transplanting cucumber seedlings according to environmental differences between plant factories with artificial lighting and conventional nurseries in greenhouse. The control group consisted of greenhouse seedlings (GH) grown in the conventional nursery before transplanting. Plant factory to greenhouse seedlings (PG) were grown for 9 days in a plant factory with artificial lighting and for 13 days in an conventional nursery. Plant factory seedlings (PF) were grown in a plant factory with artificial lighting for 22 days until planting. In terms of seedling quality, PFs had the highest relative growth rate and compactness and the best root zone development. After transplanting PFs tended to grow faster, the first harvest date was 2 days earlier than that of GHs, and the growing season ended 1 day earlier. The female flower flowering rate of the PFs was high, and the fruit set rate was of PF the lowest. The production per unit area was highest for PFs at 10.23kg Performance index on the absorption basis, the most sensitive chlorophyll fluorescence parameter, was highest at 4.14 for PFs at 4 weeks after transplantation. By comparing the maximum quantum yield of primary PS II photochemistry and dissipated energy flux per PS II reaction center electron at 4 weeks after transplantation, PFs tended to be the least stressed. PFs had the best seedling quality, growth, and production after planting, and fruit quality was consistent with that of greenhouse seedlings. Therefore, plant factory seedlings can be used in the field.

Occurrence and Control Method of Riptortus pedestris (Hemiptera: Alydidae): Korean Perspectives (국내 톱다리개미허리노린재의 발생과 방제법)

  • Lim, Un Taek
    • Korean journal of applied entomology
    • /
    • v.52 no.4
    • /
    • pp.437-448
    • /
    • 2013
  • Hemipteran bugs, which were previously considered as secondary pests, have currently become important pests of numerous crops. Among them, Riptortus pedestris (Fabricius) is a major species that occurs in Korea, Japan, China, and South Asian countries. Riptortus pedestris infests leguminous crops like soybean, vetches, and red clover; fruit trees like persimmon and yuju; and grains like barley, foxtail millet, broomcorn, and sorghum. Riptortus pedestris causes the greatest damage to soybean, as it is the most suitable host for the bug. Feeding damage during pod formation significantly reduces the yield of soybean. Currently, 17 insecticides, including diazinon and etofenprox, are registered for the control of hemipteran bugs in Korea, and growers apply insecticides two to three times on a regular basis. Aggregation pheromone traps are widely used as a monitoring tool and partial control measure. The aggregation pheromone of R. pedestris attracts conspecific adults and nymphs and is used for food exploitation rather than sexual attraction. In addition, the pheromone serves as a kairomone for egg parasitoids such as Gryon japonicum (Ashmead) and Ooencyrtus nezarae Ishii. As a new method of pest management, nonviable host eggs were included in the pheromone trap to catch R. pedestris and propagate parasitoids. As a part of cultural practices, resistant soybean varieties with specific color and size of pod and control of flowering time through the alteration of planting date can be used. For the effective management of R. pedestris in the near future, development of cultural practices that can support natural control factors and the use of multiple control tactics are needed.

Effects of Seeding and Organic Fertilizer Rates and Harvest time on Kenaf Yield and Feed Value (파종량, 유기질 비료 시용량 및 수확시기에 따른 케나프의 수량 및 사료가치)

  • Nam, Cheol Hwan;Kim, Ki Soo;Park, Man Ho;Kim, Won Ho;Ji, Hee Jung;Choi, Ki Chun;Sun, Sang Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.2
    • /
    • pp.91-98
    • /
    • 2018
  • This study was conducted in 2014 in the Gangjin area of Jeonnam province for the purpose of confirming the potential of Kenaf as an alternative feed crop of rice. The weather and soil conditions were favorable and there was no adverse effect on the growth of Kenaf. The amount of seeding was given at 10 kg, 15 kg and 20 kg. As the seeding volume increased, plant height and dry matter yield increased, and stem diameter and number of nodes decreased. The highest growth rate was observed between 75 and 90 days from the date of planting(p<0.05). As the growth progressed, stem rate increased and leaf rate decreased(p<0.05). Increased amount of seeding and growth resulted in decreased CP and TDN and increased ADF and NDF, which resulted in the decreased economic value of Kenaf as a feed crop. The result of increasing the use of organic fertilizer to 20 kg and 30 kg was similar to increasing the amount of seeding. As organic fertilizer usage increased, dry matter yield and growth rate improved(p<0.05).

Development of a gridded crop growth simulation system for the DSSAT model using script languages (스크립트 언어를 사용한 DSSAT 모델 기반 격자형 작물 생육 모의 시스템 개발)

  • Yoo, Byoung Hyun;Kim, Kwang Soo;Ban, Ho-Young
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.3
    • /
    • pp.243-251
    • /
    • 2018
  • The gridded simulation of crop growth, which would be useful for shareholders and policy makers, often requires specialized computation tasks for preparation of weather input data and operation of a given crop model. Here we developed an automated system to allow for crop growth simulation over a region using the DSSAT (Decision Support System for Agrotechnology Transfer) model. The system consists of modules implemented using R and shell script languages. One of the modules has a functionality to create weather input files in a plain text format for each cell. Another module written in R script was developed for GIS data processing and parallel computing. The other module that launches the crop model automatically was implemented using the shell script language. As a case study, the automated system was used to determine the maximum soybean yield for a given set of management options in Illinois state in the US. The AgMERRA dataset, which is reanalysis data for agricultural models, was used to prepare weather input files during 1981 - 2005. It took 7.38 hours to create 1,859 weather input files for one year of soybean growth simulation in Illinois using a single CPU core. In contrast, the processing time decreased considerably, e.g., 35 minutes, when 16 CPU cores were used. The automated system created a map of the maturity group and the planting date that resulted in the maximum yield in a raster data format. Our results indicated that the automated system for the DSSAT model would help spatial assessments of crop yield at a regional scale.