DOI QR코드

DOI QR Code

Comparison of Seedling Quality of Cucumber Seedlings and Growth and Production after Transplanting according to Differences in Seedling Production Systems

육묘 생산 시스템 차이에 따른 오이 모종의 묘소질과 정식 후 생육 비교

  • Soon Jae Hyeon (Horticulture, Kangwon National University) ;
  • Hwi Chan Yang (Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Young Ho Kim (Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Yun Hyeong Bae (Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Dong Cheol Jang (Horticulture, Kangwon National University)
  • 현순재 (강원대학교 원예학과) ;
  • 양휘찬 (강원대학교 스마트농업융합학과) ;
  • 김용호 (강원대학교 스마트농업융합학과) ;
  • 배윤형 (강원대학교 스마트농업융합학과) ;
  • 장동철 (강원대학교 원예학과)
  • Received : 2024.04.01
  • Accepted : 2024.04.25
  • Published : 2024.04.30

Abstract

This study provides basic data on the growth and production of seedlings produced in plant factories with artificial lighting by comparing seedling quality, growth and fruit characteristics, and production after transplanting cucumber seedlings according to environmental differences between plant factories with artificial lighting and conventional nurseries in greenhouse. The control group consisted of greenhouse seedlings (GH) grown in the conventional nursery before transplanting. Plant factory to greenhouse seedlings (PG) were grown for 9 days in a plant factory with artificial lighting and for 13 days in an conventional nursery. Plant factory seedlings (PF) were grown in a plant factory with artificial lighting for 22 days until planting. In terms of seedling quality, PFs had the highest relative growth rate and compactness and the best root zone development. After transplanting PFs tended to grow faster, the first harvest date was 2 days earlier than that of GHs, and the growing season ended 1 day earlier. The female flower flowering rate of the PFs was high, and the fruit set rate was of PF the lowest. The production per unit area was highest for PFs at 10.23kg Performance index on the absorption basis, the most sensitive chlorophyll fluorescence parameter, was highest at 4.14 for PFs at 4 weeks after transplantation. By comparing the maximum quantum yield of primary PS II photochemistry and dissipated energy flux per PS II reaction center electron at 4 weeks after transplantation, PFs tended to be the least stressed. PFs had the best seedling quality, growth, and production after planting, and fruit quality was consistent with that of greenhouse seedlings. Therefore, plant factory seedlings can be used in the field.

본 연구는 인공광 이용형 식물공장과 공정육묘장의 환경차이에 따른 오이 모종의 묘소질, 정식 후 생육과 과실의 특성 및 생산량 비교를 통해 인공광 이용형 식물공장에서 생산된 모종의 생육과 생산량의 대한 기초 자료를 제공하고자 연구를 수행하였다. 처리구는 정식 전까지 공정육묘장에서 육묘한 Greenhouse 모종(GH)이 대조구이다. 가식전까지 인공광 이용형 식물공장에서 9일간 육묘하고, 가식 후 육묘장에서 13일간 육묘한 Plant factory to Greenhouse 모종(PG), 정식 전까지 인공광 이용형 식물공장에서 22일간 육묘한 Plant factory 모종(PF)으로 나누어 구분하였다. 묘소질에서는 PF의 상대 생장률과 충실도가 가장 높았고, 근권부 발달 또한, 가장 우수하였다. 정식 후 생육 또한 세 처리구 중 PF가 빠른 경향을 나타냈으며 첫 수확일이 GH에 비해 2일 빨랐고 작기는 1일 빠르게 종료되었다. 과장, 과폭 및 과중을 비교한 결과 처리구에 따른 차이는 미미하였다. PF가 암꽃 개화율이 높았고, 착과율은 PF가 가장 낮았다. 단위면적당 생산량은 PF가 10.23kg으로 가장 많았다. 엽록소 형광 매개 변수 중 가장 민감하게 반응하는 Pi_Abs는 정식 후 4주차에 PF가 4.14로 가장 높았다. 정식 후 4주차의 Fv/Fm과 DI0/RC를 비교한 결과 PF가 가장 스트레스를 적게 받는 경향을 나타냈다. PF는 묘소질, 정식 후 생육 및 생산량이 가장 우수하였으며, 과실 품질은 GH의 과실과 차이가 없었기 때문에 PF를 현장에 적용할 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 2023년도 강원대학교 학술연구조성비로 연구하였음.

References

  1. An J.H., S.H. Jeon, E.Y. Choi, H.M. Kang, J.K. Na, and K.Y. Choi 2021a, Effect of irrigation starting point of soil on chlorophyll fluorescence, stem sap flux relative rate and leaf temperature of cucumber in greenhouse. J Bio-Env Con 30(1):46-55. (in Korean) doi:10.12791/KSBEC.2021.30.1.046 
  2. An S.W., H.J. Lee, H.S. Sim, S.R. Ahn, S.T. Kim, and S.K. Kim 2021b, Profiles of environmental parameters in a plant factory with artificial lighting and evaluation on growth of cucumber seedlings. J Bio-Env Con 30(2):126-132. (in Korean) doi:10.12791/KSBEC.2021.30.2.126 
  3. An S.W., S.W. Park, and Y.Kwack 2020, Growth of cucumber scions, rootstocks, and grafted seedlings as affected by different irrigation regimes during cultivation of 'Joenbaek-dadagi' and 'Heukjong'seedlings in a plant factory with artificial lighting. Agronomy 10(12):1943. doi:10.3390/agronomy10121943 
  4. Baghbani F., R. Lotfi., S. Moharramnejad, A. Bandehagh, M. Roostaei, A. Rastogi, and H.M. Kalaji 2019, Impact of Fusarium verticillioides on chlorophyll fluorescence parameters of two maize lines. Eur J Plant Pathol 154:337-346. doi:10.1007/s10658-018-01659-x 
  5. Boureima S., A. Oukarroum, M. Diouf, N. Cisse, and P. van Damme 2012, Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence. Environ Exp Bot 81:37-43. doi:10.1016/j.envexpbot.2012.02.015 
  6. Choi S.H., J.S. Kang, Y.W. Choi, Y.J. Lee, Y.H. Park, M.R. Kim, B.G. Son, H.K. Kim, H.Y. Kim, and W. Oh 2011, Effect of diniconazole on growth and flowering of Vinca rocea and Salvia splendis. J Life Sci 21(7):1004-1008. (in Korean) doi:10.5352/JLS.2011.21.7.1004 
  7. Farhana U. 2015, Effects of plant growth regulators on flowering behaviour and yield of cucumber. MS Dissertation, Sher-E-Bangla Agricultural Univ., Dhaka, Bangladesh. pp 37-42 
  8. Haque M.S., K.H.Kjaer, E.Rosenqvist, and C.O. Ottosen 2015, Continuous light increases growth, daily carbon gain, antioxidants, and alters carbohydrate metabolism in a cultivated and a wild tomato species. Front Plant Sci 6:129962. doi:10.3389/fpls.2015.00522 
  9. Hwang H.S., S. An, M.D. Pham, M. Cui, and C. Chun 2020, The combined conditions of photoperiod, light intensity, and air temperature control the growth and development of tomato and red pepper seedlings in a closed transplant production system. Sustainability 12(23):9939. doi:10.3390/su12239939 
  10. Jang Y., H.J. Lee, C.S. Choi, Y. Um, and S.G. Lee 2014, Growth characteristics of cucumber scion and pumpkin rootstock under different levels of light intensity and plug cell size under an artificial lighting condition. J Bio-Env Con 23(4):383-390. (in Korean) doi:10.12791/KSBEC.2014.23.4.383 
  11. Jeong H.W., H.R. Lee, H.S. Hwang, E.B. Kim, and S.J. Hwang 2020a, Growth suppression of tomato plug seedlings as affected by material type for brushing stimulation. J Bio-Env Con 29(4):313-319. (in Korean) doi:10.12791/KSBEC.2020.29.4.313 
  12. Jeong H.W., H.R. Lee, H.M. Kim, H.M. Kim, H.S. Hwang, and S.J. Hwang 2020b, Using light quality for growth control of cucumber seedlings in closed-type plant production system. Plants 9(5):639. doi:org/10.3390/plants9050639 
  13. Kim Y.H., H.C. Yang, Y.H. Bae, S.J. Hyeon, S.J. Hwang, D.H. Kim, and D.C. Jang 2023, Preventing overgrowth of cucumber and tomato seedlings using difference between day and night temperature in a plant factory with artificial lighting. Plants 12(17):3164. doi:10.3390/plants12173164 
  14. Korean Statistical Information Service (KOSIS) 2021a, https://kosis.kr/statHtml/statHtml.do?orgId=114&tblId=DT_114052_B04&conn_path=I2. Accessed 6 March 2024. 
  15. Korean Statistical Information Service (KOSIS) 2021b, https://kosis.kr/statHtml/statHtml.do?orgId=114&tblId=DT_114052_B23_1&conn_path=I2. Accessed 11 March 2024. 
  16. Kozai T., and G. Niu 2020, Role of the plant factory with artificial lighting (PFAL) in urban areas. In Plant Factory (pp. 7-34). Elsevier. doi:10.1016/B978-0-12-816691-8.00002-9 
  17. Kwack Y., and S. An 2021, Changes in growth of watermelon scions and rootstocks grown under different air temperature and light intensity conditions in a plant factory with artificial lighting. J Bio-Env Con 30(2):133-139. (in Korean) doi:10.12791/KSBEC.2021.30.2.133 
  18. Lee H.J., Y.H. Moon, S. An, H.S. Sim, U.J. Woo, H. Hwang, and S.K. Kim 2023, Determination of LEDs arrangement in a plant factory using a 3D ray-tracing simulation and evaluation on growth of Cucurbitaceae seedlings. Hortic Environ Biotechnol 64(5):765-774. doi:10.1007/s13580-023-00523-0 
  19. Lee H.W., J.G. Lee, M.C., I. Hwang, K.H. Hong, D.H. Kwon, and Y.K. Ahn 2022, Growth characteristics of tomatoes grafted with different rootstocks grown in soil during winter season. J Bio-Env Con 31(3):194-203. (in Korean) doi:10.12791/KSBEC.2022.31.3.194 
  20. Lee J.H., and M.M. Oh 2023, Changes in growth and antioxidant phenolic contents of kale according to CO2 concentration before UV-A light treatment. J Bio-Env Con 32(4):342-352. (in Korean) doi:10.12791/KSBEC.2023.32.4.342 
  21. Lee S.I., S.H. Yeon, J.S. Cho, M.J. Jeong, and C.H. Lee 2020, Optimization of cultivation conditions on effective seedlings of veronica rotunda var. subintegra (Nakai) T. Yamaz. J BioEnv Con 29(2):181-188. (in Korean) doi:10.12791/KSBEC.2020.29.2.181 
  22. Moon Y.H., U.J. Woo, H.S. Sim, T.Y. Lee, H.R. Shin, J.S. Jo, and S.K. Kim 2023a, Development of a semi-open chamber system for the gas exchange measurement of whole-canopy under steady and unsteady states in cucumber seedlings. Plant Methods 19(1):79. doi:10.1186/s13007-023-01059-1 
  23. Moon Y.H., M. Yang, U.J. Woo, H.S. Sim, T.Y. Lee, H.R. Shin, J.S. Jo, and S.K. Kim 2023b, Evaluation of growth and photosynthetic rate of cucumber seedlings affected by far-red light using a semi-open chamber and imaging system. Horticulturae 9(1):98. doi:10.3390/horticulturae9010098 
  24. Park S.W., S. An, and Y. Kwack 2020, Changes in transpiration rates and growth of cucumber and tomato scions and rootstocks grown under different light intensity conditions in a closed transplant production system. J Bio-Env Con 29(4):399-405. (in Korean) doi:10.12791/KSBEC.2020.29.4.399 
  25. Rural Development Administration (RDA) 2021a, Cucumber Agricultural technology guide 107. RDA, Jeonju, Korea, 24. (in Korean)
  26. Rural Development Administration (RDA) 2021b, Cucumber Agricultural technology guide 107. RDA, Jeonju, Korea, 77. (in Korean)
  27. Seo T.C., S.W. An, H.W. Jang, C.W. Nam, H. Chun, T.K. Kang, and S.H. Lee 2018, An approach to determine the good seedling quality of grafted tomatoes (Solanum lycopersicum) grown in cylindrical paper pot through the relation analysis between DQI and short-term relative growth rate. J Bio-Env Con 27(4):302-311. (in Korean) doi:10.12791/KSBEC.2018.27.4.302 
  28. Shin Y.K., J.S. Jo, M.C. Cho, E.Y. Yang, Y.K. Ahn, and J.G. Lee 2021, Application of chlorophyll fluorescence parameters to diagnose salinity tolerance in the seedling of tomato genetic resources. J Bio-Env Con 30(2):165-173. (in Korean) doi:10.12791/KSBEC.2021.30.2.165 
  29. Song W.J., H.W. Goo, G.W. Lee, H.M. Kim, and K.S. Park 2024, Comparison with growth characteristics of Korean melon (Cucumis melo var. makuwa) grafted seedlings in a container type farm with LED light and a greenhouse under high temperature conditions. J Bio-Env Con 33(1):22-29. (in Korean) doi:10.12791/KSBEC.2024.33.1.022 
  30. Strasser R.J., A. Srivastava, and M. Tsimilli-Michael 2000, The fluorescence transient as a tool to characterize and screen photosynthetic samples. In M Yunus, U Pathre, P Mohanty, eds, Probing photosynthesis: mechanisms, regulation and adaptation. Taylor and Francis, London and New York, pp 445-483. 
  31. Yang H.C., Y.H. Kim, H.J. Byun, I.L. Choi, N.T. Vu, D.H. Kim, H.S. Yoon, and D.C. Jang 2023, Identification of appropriate light intensity and daytime temperature for cucumber (Cucumis sativus L.) seedlings in a plant factory with artificial lighting for use as grafting material. Sustainability 15(5):4481. doi:10.3390/su15054481 
  32. Yoon H.I., J.H. Kang, D. Kim, and J.E. Son 2021, Seedling quality and photosynthetic characteristic of vegetables grown under a spectrum conversion film. J Bio-Env Con 30(2):110-117. (in Korean) doi:10.12791/KSBEC.2021.30.2.110 
  33. Yun J.H., H.W. Jeong, S.Y. Hwang, J. Yu, H.S. Hwang, and S.J. Hwang 2023, Growth of cucumber and tomato seedlings by different light intensities and CO2 concentrations in closed-type plant production system. J Bio-Env Con 32(4):257-266. (in Korean) doi:10.12791/KSBEC.2023.32.4.257 
  34. Zhou J., P. Li, and J. Wang 2022, Effects of light intensity and temperature on the photosynthesis characteristics and yield of lettuce. Horticulturae 8(2):178. doi:10.3390/horticulturae8020178