• Title/Summary/Keyword: plant-based

Search Result 8,645, Processing Time 0.041 seconds

Advancements in Sustainable Plant-Based Alternatives: Exploring Proteins, Fats, and Manufacturing Challenges in Alternative Meat Production

  • Minju Jung;YouKyeong Lee;Sung Ok Han;Jeong Eun Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.994-1002
    • /
    • 2024
  • The rise in plant-based food consumption is propelled by concerns for sustainability, personal beliefs, and a focus on healthy dietary habits. This trend, particularly in alternative meat, has attracted attention from specialized brands and eco-friendly food companies, leading to increased interest in plant-based alternatives. The dominant plant-based proteins, derived mainly from legumes, include soy protein isolates, which significantly impact sensory factors. In the realm of plant-based fats, substitutes are categorized into fat substitutes based on fats and fat mimetics based on proteins and carbohydrates. The production of these fats, utilizing gums, emulsions, gels, and additives, explores characteristics influencing the appearance, texture, flavor, and storage stability of final plant-based products. Analysis of plant-based proteins and fats in hamburger patties provides insights into manufacturing methods and raw materials used by leading alternative meat companies. However, challenges persist, such as replicating meat's marbling characteristic and addressing safety considerations in terms of potential allergy induction and nutritional supplementation. To enhance functionality and develop customized plant-based foods, it is essential to explore optimal combinations of various raw materials and develop new plant-based proteins and fat separation.

Awareness and Consumption Behavior of Vegetarians and Omnivores on Plant-based dairy alternatives (식물성 대체 유제품(Plant-based dairy alternatives)에 대한 채식주의자와 잡식주의자의 인식 및 소비행동)

  • Mirae Shin;Jieun Oh;Mi-Sook Cho
    • Journal of the Korean Society of Food Culture
    • /
    • v.38 no.3
    • /
    • pp.154-162
    • /
    • 2023
  • This study investigated the awareness and consumption behavior of 118 vegetarians and omnivores toward plant-based dairy alternatives. The preference and choice attribute questionnaires were compared. Significant differences were obtained between the two groups when considering the purchase experience, preference, and selection attributes of plant-based dairy alternatives. Vegetarians had more experience purchasing plant-based dairy alternative products. In both groups, environmental and animal protection were the major factors that influenced the highest response rate for purchasing plant-based dairy alternatives. The preference score of vegetarians for plant-based dairy alternative products was high, indicating that vegetarianism had a significant effect on their preference for plant-based dairy alternative products. Analysis of selection attributes revealed that price, product weight, appearance, and manufacturer were considered important by vegetarians, whereas nutritional components and labeling, manufacturing environment, composition of ingredients, and taste and texture were considered more important by the omnivores. Results of this study can be used as basic data for the future development of the fast-growing industry producing plant-based dairy alternative products.

The Impact of Plant-Based Non-Dairy Alternative Milk on the Dairy Industry

  • Park, Young Woo
    • Food Science of Animal Resources
    • /
    • v.41 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • Vegetarians have claimed and actively promoted the advantages of plant-based alternative milks as the best option for human nutrition and health, compared to the natural dairy milk. However, numerous scientific evidences and reports have demonstrated that the natural milk possesses more beneficial nutrients and bioactive components than artificially manufactured plant-derived milks. The biochemical and nutritional advantages and functionalities of natural dairy milk cannot be replaced by man-made or crafted plant-based beverage products. On the other hand, the tremendous increase in production and consumption of the plant-based alternative milks in recent years has led a serious business downturn in traditional roles and stability of the dairy industry, especially in the major dairy producing Western countries. Although plant-based milk alternatives may have some benefits on nutrition and health of certain consumers, the plant-derived alternative milks may not overshadow the true values of natural milk. Milk is not a high fat and high cholesterol food as animal meat products. Unlike plant-based alternative milks, natural milk contains many bioactive as well as antiappetizing peptides, which can reduce body weight. It has proven that taking low-fat, cultured and lactase treated milk and dairy products with other diversified nutritionally balanced diets have been shown to be healthier dietary option than plant-based milk/foods alone.

Design of a Plant Life Cycle Data Management System for Plant Operation and Maintenance (플랜트 설계 및 운영 데이터 통합관리 시스템 설계)

  • Lee, Jae Hyun;Suh, Hyo Won
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.3
    • /
    • pp.241-248
    • /
    • 2016
  • Plant life cycle consists of design, construction, certification, operation, and maintenance phases, and various and enormous plant life cycle data is involved in each phase. Plant life cycle data should be linked with each other based on its proper relationships, so that plant operators can access necessary plant data during their regular operations and maintenance works. Currently, the relationships of plant life cycle data may not be defined explicitly, or they are scattered over several plant information systems. This paper proposes high level design of a plant life cycle data management system based on pre-defined plant life cycle database design. ISO-15926 standard is adapted for the database design. User-interface designs of the plant life cycle data management system are explained based on analysis of plant owners' requirements. A conceptual design of the database is also described with the entity-relationship diagram.

Development of a Knowledge-Based Information Management System for Plant Maintenance (설비 관리를 위한 지식기반 정보관리 시스템의 개발)

  • Park, Young-Jae;Lee, Sang-Min;Yim, Hyung-Sang;Choi, Jae-Boong;Kim, Young-Jin;Roh, Eun-Chul;Lee, Byung-Ine
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1933-1940
    • /
    • 2003
  • Recently, the importance of plant maintenance(PM) was highly raised to provide efficient plant operation which highly affects the productivity. For this reason, a number of engineering methodologies, such as risk-based inspection(RBI), fitness for service guidelines(FFS), plant lifecycle management(PLM), have been applied to improve the plant operation efficiency. Also, a network-based business operation system, which is called ERP(Enterprise Resource Planning), has been introduced in the field of plant maintenance. However, there was no attempt to connect engineering methodologies to the ERP PM system. In this paper, a knowledge-based information system for the plant operation of steel making company has been proposed. This system which is named as K-VRS(Knowledge-based Virtual Reality System), provides a connection between ERP plant maintenance module and knowledge-based engineering methodologies, and thus, enables network-based highly effective plant maintenance process. The developed system is expected to play a great role for more efficient and safer plant maintenance.

Quality characteristics of plant-based whipped cream with ultrasonicated pea protein

  • Insun Kim;Kwang-Deog Moon
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.64-79
    • /
    • 2024
  • The rise in popularity of vegetarian and plant-based diets has led to extensive research into plant-based whipped creams. Whipped cream is an oil-in-water emulsion that creates foam through whipping, stabilizing the foam with proteins and fats. Pea protein is an excellent emulsifier and foaming agent among plant-based proteins, but its application in whipped cream is currently limited. The objective of this study was to investigate the quality characteristics of plant-based whipped cream made with ultrasonicated pea protein. The whipped creams were evaluated based on their quality characteristics. A commercially available dairy whipped cream (CON) was used as a control. Plant-based creams were evaluated using pea protein solution, cocoa butter, and canola oil to produce un-ultrasonicated pea protein whipped cream (PP) and ultrasonicated pea protein whipped cream (UPP) at 360 W for 6 min. UPP significantly reduced whipping time and foam drainage compared with CON and PP, resulting in significantly increased overrun, fat destabilization, and hardness. Optical microscopy showed that UPP had smaller fat globules and bubble size than PP. The fat globules of UPP and CON were mostly below 5 ㎛, whereas those of PP were distributed at 5-20 ㎛. Finally, ultrasonication significantly improved the overrun, foam drainage, fat destabilization, and hardness of UPP, which are significant quality characteristics of whipped creams. Therefore, ultrasonicated plant-based pea protein whipped cream is believed to be a viable alternative to dairy whipped cream.

Development of a Knowledge-based Information Management System for Plant Maintenance (설비 관리를 위한 지식기반 정보관리 시스템의 개발)

  • Yim, Hyung-Sang;Park, Young-Jae;Lee, Sang-Min;Choi, Jae-Boong;Kim, Young-Jin;Roh, Eun-Chul;Lee, Byung-Ine
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.149-156
    • /
    • 2003
  • Recently, the importance of plant maintenance(PM) was highly raised to provide efficient plant operation which highly affects the productivity. For this reason, a number of engineering methodologies, such as riskbased inspection(RBI), fitness for service guidelines(FFS), plant lifecycle management(PLM), have been applied to improve the plant operation efficiency. Also, a network-based business operation system, which is called ERP(Enterprise Resource Planning), has been introduced in the field of plant maintenance. However, there was no attempt to connect engineering methodologies to the ERP PM system. In this paper, a knowledge-based information system for the plant operation of steel making company has been proposed. This system, which is named as K-VRS(Knowledge-based Virtual Reality System), provides a connection between ERP plant maintenance module and knowledge-based engineering methodologies, and thus, enables network-based highly effective plant maintenance process. The developed system is expected to play a great role for more efficient and safer plant maintenance.

  • PDF

The Current Status and Future Outlook of Quantum Dot-Based Biosensors for Plant Virus Detection

  • Hong, Sungyeap;Lee, Cheolho
    • The Plant Pathology Journal
    • /
    • v.34 no.2
    • /
    • pp.85-92
    • /
    • 2018
  • Enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), widely used for the detection of plant viruses, are not easily performed, resulting in a demand for an innovative and more efficient diagnostic method. This paper summarizes the characteristics and research trends of biosensors focusing on the physicochemical properties of both interface elements and bioconjugates. In particular, the topological and photophysical properties of quantum dots (QDs) are discussed, along with QD-based biosensors and their practical applications. The QD-based Fluorescence Resonance Energy Transfer (FRET) genosensor, most widely used in the biomolecule detection fields, and QD-based nanosensor for Rev-RRE interaction assay are presented as examples. In recent years, QD-based biosensors have emerged as a new class of sensor and are expected to open opportunities in plant virus detection, but as yet there have been very few practical applications (Table 3). In this article, the details of those cases and their significance for the future of plant virus detection will be discussed.

Development of STAGE-GATE based Evaluation Index for the Improvement of Design Quality of Plant Material (플랜트 기자재 설계품질 향상을 위한 STAGE-GATE 기반 평가항목 개발)

  • Lee, In Tae;Baek, Dong Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.65-71
    • /
    • 2020
  • Worldwide plant market keeps maintaining steady growth rate and along with this trend, domestic plant market and its contractors also maintain such growing tendency. However, in spite of its external growth, win-win growth of domestic material industry that occupies the biggest share in plant industry cost portion is extremely marginal in reality. Domestic plant material suppliers are required to increase awareness of domestic material brand by securing quality and reliability of international standard through improvement of design quality superior to that of overseas material suppliers. Improvement of design quality of plant material becomes an essential element, not an option, for survival of domestic plant industry and its suppliers. Under this background, in this study, priority and importance by each evaluation index was analyzed by materializing plant design stage through survey of experts and defining evaluation index by each design stage and based on this analysis result, evaluation index of stage-gate based decision-making process that may improve design quality of plant material was suggested. It is considered that by utilizing evaluation index of stage-gate based decision-making process being suggested in this study, effective and efficient decision-making of project decision-makers would be enabled and it would be contributory to improve design quality of plant material.

Physicochemical Properties and Plant Coverage of Wood-based Growing Media on Slopes

  • Moon, Hong-Duk;Ha, Si Young;Jung, Ji Young;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.645-655
    • /
    • 2018
  • The use of wood waste as substrate for plant growth exemplifies a strategy for turning waste into resources. The overall objective of this research was to evaluate the effects of wood-based growing media on plant cover in a slope area. Moreover, we tried to find out what physicochemical properties affect plant cover on a slope. For treatments, we tested natural soil, soil mixed with wood-based growing medium (1:1, w/w), and wood-based growing medium by itself. Physical and chemical characteristics were evaluated after four months from the date of treatment application to the experimental slope site. Soil coverage with seedlings of Lespedeza cyrtobotrya was measured for plant growth evaluation. Physicochemical properties were altered by mixing the natural soil with wood-based growing medium. Particularly, soil moisture and organic matter contents were significantly changed in soils treated with wood-based growing medium compared to soil alone. We confirmed that plant coverage rate was high when wood-based growing medium was mixed with the natural soil. There was a significant linear relationship between moisture content and CEC (Cation Exchange Capacity) of all growth media tested and plant coverage. This result was expected, as moisture content tends to increase with organic matter content, such as in wood-based growing medium. In conclusion, the high moisture content of the wood-based growing medium was considered effective for plant growth in the experimental slope site, and this wood-based growing medium provides a means to improve the harmony between the slope and the surrounding environment.