• Title/Summary/Keyword: plant suspension culture

Search Result 288, Processing Time 0.034 seconds

Regeneration of Fertile Transgenic Rice Plane from a Korean Cultivar, Nakdongbyeo (한국 재배종 낙동벼에서 임성 형질전환식물체의 재분화)

  • Soo In LEE;Hyun Jin CHUN;Chae Oh LIM;Jeong Dong BAHK;Moo Je CHO
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.3
    • /
    • pp.175-182
    • /
    • 1995
  • Rice is one of the most successful monocot in regenerating fertile and genetically stable transgenic plants. However there is no report of a rice line developed in Korea that can be used for regeneration of fertile and genetically stable transformants. In this paper we first demonstrate that a Korean variety Nakdongbyeo, is suitable to obtain transgenic rice plants. Protoplasts from embryogenic suspension cultures were co-transformed with HPT (hygromycin phosphotransferase) and GUS ($\beta$-glucuronidase) genes in separate plasmids in the presence of PEG (polyethylene glycol). In 5 independent experiment, the average frequency of calli showing hygromycin resistance were 1.73%. Plantlets were regenerated from the Hy $g^{R}$ calli. The average efficiency of plantlet regeneration was apprbximately 27%. Based on the GUS activities of hygromycin resistant calli, ca.35% of the resistant calli carried active GUS genes. The R0 transgenic plantlets were grown to maturity and Rl seeds were obtained. By examining the in siぉ activity of GUS in Rl seeds and seedlings, we confirmed that the GUS transgene driven by a CaMV 35S (cauliflower mosaic virus) promoter showed proper expression patterns. We also confirmed Mendelian segregation of the HPT transgene in the Rl generation.n.

  • PDF

Antifungal Activity of Streptomyces pad anus isolate TH04 against Monilinia fructicola, Brown rot Fungus on Stone-fruits (잿빛무늬병균에 대한 Streptomyces padanus isolate TH04의 항균활성)

  • Lim, Tae-Heon;Choi, Yong-Hwa;Lee, Dong-Woon;Han, Sang-Sub;Cha, Byeong-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.3
    • /
    • pp.291-294
    • /
    • 2008
  • The Streptomyces padanus isolate TH04, isolated from mummified peaches, showed strong antifungal activity to Monilinia fructicola. The inhibition activity of the isolate TH04 to mycelial growth and spore germination at 1% concentration of sub-antifungal powder made from culture suspension (CS) was ranged from 79.8% to 81.0% and from 73.9% to 75.8% to M. fructicola four strains, respectively. In the test of antifungal activity in mixed culture of the isolate and M. fructicola, inhibition rate was 7.5%, 86.8% and 94.0% in 0.01, 0.1, and 1% concentration of CS containing bacterial cell of the isolate, respectively. On apples (cultivar; Fuji), the control values of the isolate TH04 crude filtrates (0.1 and 1%) were 85.9% and 100%, respectively. The results suggest that the isolate TH04 indicate development possibility as biocontrol agent of brown rot caused by M. fructicola with the study on delivery method and fermentation condition to produce an antifungal compound.

Plant Regeneration of Bupleurum spp. through Somatic Tissue Culture (자호(紫胡)의 체세포조직배양(體細胞組織培養)에 의한 식물체재분화(植物體再分化))

  • Park, Cheol-Ho;Yu, Chang-Yeon;Kim, Dong-Wook;Cho, Hye-Kyeong;Park, Kyeong-Suk;Seo, Jeong-Sik;Ahn, Sang-Deuk;Jang, Byeong-Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.2 no.1
    • /
    • pp.60-66
    • /
    • 1994
  • This study was conducted to determine the optimum conditions of inducing callus, proliferating callus, forming somatic embryos, and regenerating plantlets via somatic embryogenesis, for the purpose of producing artificial seeds and substantially developing plant factory technologies that can be employed to all seasons production of Bupleurum plants. Callus was efficiently induced from leaf tissues at three leaf stage in the MS medium supplemented with 2, 4-D 2mg /1 and thidiazuron(TDZ) 0.lmg /1. Callus induction from leaf tissues at maturity was mostly effective in the mixture of 2,4- D 2mg /1 and TDZ 1.0mg /1 while that from flower bud tissues was fairly good in the MS medium containing 2,4-D 1 or 2mg /1.Callus was formed in 15 to 20 days after culture initiation in the MS media supplemented with 2, 4- D 1-2mg /1 and TDZ 0.l-1.0mg /1. Such hormones as kinetin 3mg /1, GA 1mg /1, and the mixture of GA 1mg /1 and TDZ 1mg /1 effected markedly to proliferate the callus cells.The optimum temperature and light intensity for callus culture were found to be $25^{\circ}C$ and 3000 Lux, respectively. Direct plant regeneration from cultured callus was fairly made on hormone-free MS or half-strength MS medium. Somatic embryogenesis was most frequently observed in hormone-free media:60 somatic embryos per 20ml in MS medium and 28 somatic embryos per 20ml in half -strength MS medium. There were three stages-globular, heart, and torpedo-in development of somatic embryos, among which globular stage was more frequently observed in MS medium rather than in half-strength MS medium. Somatic embryos induced from suspension culture fairly differentiated a number of shoots and roots on hormone-free and half-strength MS solid medium.

  • PDF

Effects of Nutritional Conditions on Tobacco (Nicotianatcbfeum L) Cell Suspension Culture (담배세포 (Nicotiana tabacum) 의 액체배양에 관한 연구)

  • 윤경은;김용철;민태기;손세호;강서규
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 1979
  • For the preliminary experiments of mass Production of tobacco cells in tank culture, the effects of nutritional conditions on the growth of suspended cells were investigated ; 1. The tobacco cell growth was affected by concentrations of sucrose or inorganic phosphate, type of nitrogen source, and plant hormone, especially 2, 4-D. 2. The optimum level of sucrose concentration was 3% and the level of inorganic phosphate was 0.3mg /ml, which was about twice as high as the level of Linsmaier - Skoog medium. 3. The best growth was observed when the ratio of nitrate nitrogen to ammonium nitrogen was 2 : 1, where the total nitrogen content was equal to that of nitrogen source. 4. To find out the mechanism of promotive effects of 214-D and inorganic phosphate on the tobacco cell growth, the respiration and metabolism of $^{14}\textrm{C}$-91ucose were investigated. Addition of 2, 4 -D in culture medium increased if 2, 4-D (0.2ppm )was added to medium or the level of inorganic Phosphate was raised 2.5 times as high as standard. In cultures with high inorganic phosphate and 2, 4-D, the absorbed 14C-glucose was converted to amino acids and organic acids rather than remained as sugars.

  • PDF

Molecular Cloning and Expression of the Metallothionein Gene under Environmental Stresses in Sweet Potato (고구마 metallothionein 유전자의 클로닝 및 환경 스트레스 하에서 발현 분석)

  • Kim, Young-Hwa;Yu, Eun Jeong;Huh, Gyung-Hye
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1415-1420
    • /
    • 2017
  • The metallothionein (MT) gene (IbMT3) was selected from an EST library of suspension-cultured sweet potato cells. The MT gene, which is one of abundant ESTs in the library, is involved in stress regulation of cells and tissues. A full-length IbMT3 cDNA was obtained and analysis of its nucleotide sequence revealed that IbMT3 encoded a type 3 MT protein, based on its structural characteristics. The function of type 3 MT in plants is not yet known. Northern blot analysis showed stronger expression of IbMT3 in suspension-cultured cells than in sweet potato plant leaves. Since cell culture is known to impose a state of oxidative stress on cells, sweet potato plants were subjected to oxidative stress to investigate the transcriptional regulation of IbMT3. When the herbicide methyl viologen (MV) was administered for 6, 12, and 24 hr, IbMT3 transcription rapidly increased at 6 hr and then decreased. A cold treatment at $15^{\circ}C$ for 24 and 48 hr resulted in a gradual increase in IbMT3 expression. These findings indicate that IbMT3 expression is regulated in response to environmental and oxidative stress. IbMT3 isoform is expected to have antioxidant effects in sweet potato plants and may play an important role in cellular adaptation to oxidative stress.

Effects of Some Plant Growth Regulators on Protein Biosynthesis of Carrot Cells (당근 세포의 단백질 생합성에 대한 몇가지 식물생장조절제의 영향)

  • Yoo, Ki-Jung;Park, Chang-Kyu;Song, Tae-Chul
    • Applied Biological Chemistry
    • /
    • v.28 no.3
    • /
    • pp.187-195
    • /
    • 1985
  • Electrophoretic studies of protein extracts from carrot calluses suspension-cultured on the media containing kinetin, BA, IAA, NAA or $GA_3$ at the levels of $10^{-6},\;10^{-5},\;10^{-4}M$, respectively, were performed to identify polypeptides and proteins regulated by auxin, cytokinin or GA. Fifteen bands of polypeptide(s) were observed in the callus cultured in the control medium devoid of growth regulators, and their molecular weights were $18._4,\;20._2,\;20._0,\;34._9,\;35._7,\;37._4,\;40._3,\;42._2,\;44._1,\;44._4,\;49._3,\;55._0,\;56._6,\;58._1,\;and\;59._9\;KD$, respectively. The synthesis of polypeptide appeared to be promoted in two bands by kinetin, in six bands by BA, in one band by IAA, in two bands by NAA, and in four bands by $GA_3$, while inhibited in five bands by kinetin, in three bands by BA, in four bands by IAA, in three bands by NAA and in three bands by $GA_3$. The polypeptides of $40._3\;KD\;42._2\;KD$ seemed to be regulated by cytokinins, and those of $44._1\;KD,37._4\;KD,\;and\;56._6\;KD$ by auxins. The proteins of three bands with relative mobilities of 0.56, 0.84, and 0.92, respectively, increased in the calluses cultured on the media containing kinetin, IAA, $GA_3$, NAA or BA, compared to the control, but it was difficult to identify the proteins specific for each growth regulator.

  • PDF

Induction of Embryogenic Callus and Plant Regeneration by Mature Embryo Culture of Onion (Allium cepa L.) (양파의 성숙배 배양을 통한 체세포배발생 캘러스 유기 및 식물체 재분화)

  • Cho Kwang-Soo;Hur Eun-Joo;Hong Su-Young;Moon Ji-Young
    • Journal of Plant Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.31-35
    • /
    • 2005
  • To obtain regeneration system of onion, we analyzed the effects of 2,4-D and BA concentration on the embryogenic callus induction from mature embryos. The highest embryogenic callus induction ratio was shown on MS medium (Murashie and Skoog 1962) containing $2.5\;\cal{mg/L}\;or\;5\;\cal{mg/L}$ picloram after mature embryos were placed on medium. When induced callus were cultured on half strength of MS medium containing $1\;\cal{mg/L}$ Kinetin, the highest shoot formation ratio was observed on MS medium containing $1\;{mg/L}$ 2,4-D and $1\;{mg/L}$ BA. Embryogenic callus were cultured in MS liquid medium containing $1\;\ccal{mg/L}$ of 2,4-D and $1\;\cal{mg/L}$ BA. The suspension cultured cell clumps could be mass propagated. Embryogenic callus were friable, but non-embryogenic callus included a lot of moisture, hence the identification between embryogenic and non-embryogenic callus as easily achieved. When embryogenic callus as cultured on half strength of MS medium containing $1\;\cal{mg/L}$ Kinetin, shoots were induced. The whole plantlet was obtained on rooting medium containing $0.5\;\cal{mg/}$ of NAA.

Biocontrol Potential of Streptomyces griseus H7602 Against Root Rot Disease (Phytophthora capsici) in Pepper

  • Nguyen, Xuan-Hoa;Naing, Kyaw-Wai;Lee, Young-Seong;Tindwa, Hamisi;Lee, Geon-Hyoung;Jeong, Byoung-Kon;Ro, Hee-Myeong;Kim, Sang-Jun;Jung, Woo-Jin;Kim, Kil-Yong
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.282-289
    • /
    • 2012
  • The root rot of pepper (Capsicum annuum L.) caused by Phytophthora capsici is one of the most important diseases affecting this crop worldwide. This work presents the evaluation of the capacity of Streptomyces griseus H7602 to protect pepper plants against Phytophthora capsici and establishes its role as a biocontrol agent. In this study, we isolated an actinomycete strain H7602 from rhizosphere soil, identified it as Streptomyces griseus by 16S rRNA analysis and demonstrated its antifungal activity against various plant pathogens including P. capsici. H7602 produced lytic emzymes such as chitinase, ${\beta}$-1,3-glucanase, lipase and protease. In addition, crude extract from H7602 also exhibited destructive activity toward P. capsici hyphae. In the pot trial, results showed the protective effect of H7602 against pepper from P. capsici. Application of H7602 culture suspension reduced 47.35% of root mortality and enhanced growth of pepper plants for 56.37% in fresh root and 17.56% g in fresh shoot as compared to control, resulting in greater protection to pepper plants against P. capsici infestation. Additionally, the enzymatic activities, chitinase and ${\beta}$-1,3-glucanase, were higher in rhizosphere soil and roots of pepper plants treated with H7602 than other treated plants. Therefore, our results indicated a clear potential of S. griseus H7602 to be used for biocontrol of root rot disease caused by P. capsici in pepper.

Responses of Tobacco Photomixotrophic Cultured Cells to Various Herbicides (다양한 제초제에 대한 담배 Photomixotrophic 배양세포의 반응)

  • 권혜경;권석윤;이행순;윤의수;김진석;조광연;곽상수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.3
    • /
    • pp.183-187
    • /
    • 1999
  • To establish an efficient screening system for new herbicides using plant cultured cells, responses of tobacco photomixotrophic cultured (PH) cells to various herbicides with different modes of action were surveyed by measuring the cell growth and ion conductivity in medium. The cells were cultured in Murashige and Skoog (MS) medium containing 0.7mg/L 2,4-D, 0.3mg/L kinetin and 30 g/L sucrose at $25^{\circ}C$ in the light (100 rpm). Chemicals were treated to suspension cultures of tobacco PH cells at the time of subculture. The cell growth and ion conductivity in the medium were investigated on 12 days after chemical treatment. The ion conductivity assay gave well correlated results to the cell growth inhibition data. The responses of tobacco PM cells were dependent on the modes of action of chemicals tested. Atrazine, an inhibitor of photosynthetic electron transport (PET), strongly inhibited both the cell membrane and cell growth ($IC_{50}$/, about 1 $\mu$M). Butachlor (an inhibitor of cell division), glufosinate (an inhibitor of amino acid biosynthesis), and fluridone (an inhibitor of carotenoid biosynthesis) showed a dose-dependent inhibition. However, Quinclorac, a herbicide with an auxin activity, did not affect the cell growth and ion leakage. These results suggested that tobacco PM cells is suitable materials for the simple screening of new herbicides such as PET, amino acid biosynthesis, ceil division inhibitors by measuring the cell growth and ion conductivity.

  • PDF

Biological Control of Crown Gall

  • Kerr, Allen;Biggs, John;Ophel, Kathy
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.11-26
    • /
    • 1994
  • Crown gall of stonefruit and nut trees is one of the very few plant diseases subject to efficient biological control. The disease is caused by the soil-inhabiting bacteria Agrobacterium tumefaciens and Agrobacterium rhizogenes and the original control organism was a non-pathogenic isolate of A. rhizogenes strain K84. Control is achieved by dipping planting material in a cell suspension of strain K84 which specifically inhibits pathogenic strains containing a nopaline Ti plasmid. Because the agrocin 84-encoding plasmid (pAgK84) is conjugative, it can be transmitted from the control strain to pathogenic strains which, as a result, become immune to agrocin 84 and cannot be controlled. To prevent this happening, the transfer genes on pAgK84 were located and then largely eliminated by recombinant DNA technology. The resulting construct, strain K1026, is transfer deficient but controls crown gall just as effectively as does strain K84. Field data from Spain confirm that pAgK84 can transfer to pathogenic recipients from strain K84 but not from strain K1026. The latter has been registered in Australia as a pesticide and is the first genetically engineered organism in the world to be released fro commercial use. It is recommended as a replacement for strain K84 to prevent a breakdown in the effectiveness of biological control of crown gall. Several reports indicate that both strains K84 and K1026 sometimes control crown gall pathogens that are resistant to agrocin 84. A possible reason for this is that both strains produce a second antibiotic called 434 which inhibits growth of nearly all isolates of A. rhizogenes, both pathogens and non-pathogens. Crown gall of grapevine is caused by another species, Agrobacterium vitis. It is resistant to agrocin 84 and cannot be controlled by strains K84 or K1026. It is different from other crown gall pathogens in several characteristics, including the fact that, although a rhizosphere coloniser, its also lives systemically in the vascular tissue of grapevine. Pathogen free propagating material can be obtained from tissue culture or, less surely, by heat therapy of dormant cuttings. A number of laboratories are searching for a biocontrol strain that will prevent, or at least delay, reinfection. A non-pathogenic A. vitis strain F/25 from South Africa looks very promising in this regard.

  • PDF