• Title/Summary/Keyword: plant root-knot nematode

Search Result 102, Processing Time 0.034 seconds

Occurrence of the Root-Knot Nematode species in Vegetable Crops in Souss Region of Morocco

  • Janati, Soukaina;Houari, Abdellah;Wifaya, Ahmed;Essarioui, Adil;Mimouni, Abdelaziz;Hormatallah, Abderrahim;Sbaghi, Mohamed;Dababat, Abdelfattah A.;Mokrini, Fouad
    • The Plant Pathology Journal
    • /
    • v.34 no.4
    • /
    • pp.308-315
    • /
    • 2018
  • Root-knot nematodes 'Meloidogyne spp' are the most destructive group of plant parasitic nematodes causeing serious losses in vegetables crops and this damages worsened when crops grown under greenhouses conditions. In this sutdy, the distribution and characterization of root-knot nematode species collected from the Souss region of Morocco where vegetables crops intensively cultivated were determined by using both morphological and molecular tools. Out of the 110 samples collected from different greenhouses 91 (81.7%) were found to be infested with root-knot nematodes. Thirty-seven populations of root-knot nematodes were morphologically identified based on perineal patterns as well as molecularlly using species-specific primers. The obtained results indicated that Meloidogyne javanica and M. incognita were identified in 86.4% and 13.5% of the total populations, respectively. The lowest incidence of root-knot nematodes (64%) was found in Toussous, whereas the highest frequencies of 100% and 90% were detected in Taddart and Biogra, respectively. As the majority of the samples have been infested with Meloidogyne species; this indicates that there is an urgent need to provide farmers with a proper control strategy.

Nematicidal Compounds from the Leaves of Schinus terebinthifolius Against Root-knot Nematode, Meloidogyne incognita Infecting Tomato

  • Abdel Bar, Fatma M.;Ibrahim, Dina S.;Gedara, Sahar R.;Abdel-Raziq, Mohammed S.;Zaghloul, Ahmed M.
    • Natural Product Sciences
    • /
    • v.24 no.4
    • /
    • pp.272-283
    • /
    • 2018
  • The root-knot nematode, Meloidogyne incognita caused a serious damage to many plants. The phenolic components of the leaves of Schinus terebinthifolius were investigated as potential nematicidal agents for M. incognita. Nine compounds were isolated and characterized as viz., 1,2,3,4,6-pentagalloyl glucose (1), kaempferol-3-O-${\alpha}$-L-rhamnoside (Afzelin) (2), quercetin-3-O-${\alpha}$-L-rhamnoside (Quercetrin) (3), myricetin (4), myricetin-3-O-${\alpha}$-L-rhamnoside (Myricetrin) (5), methylgallate (6), protocatechuic acid (7), quercetin (8), and gallic acid (9) using nuclear magnetic resonance (NMR) spectroscopy. Compound 1 showed pronounced nematicidal activity compared to Oxamyl as a positive control. It showed the lowest eggs-hatchability (34%) and the highest mortality in nematode population (21% after 72 hours of treatment) at a concentration of $200{\mu}g/mL$. It exhibited the best suppressed total nematode population, root galling and number of eggmasses in infected tomato plants. The total carbohydrates and proteins were also significantly induced by 1 with reduction in total phenolics and increase in defense-related proteins. Thus, compound 1 could be a promising, more safe and effective natural nematicidal agent for the control of root-knot nematodes.

Screening and Utilization of Antagonistic Plants to Control Northern root-knot Nematode in Ginseng Fields (인삼포장에 발생하는 당근뿌리혹선층의 방제를 위한 길항식물의 탐색)

  • Yang, Kae-Jin;Doh, Eun-Soo;Kim, Kwang-Ho
    • Journal of Ginseng Research
    • /
    • v.20 no.3
    • /
    • pp.331-338
    • /
    • 1996
  • This study was conducted to screen the antagonistic plants on northern root-knot nematode (Meloidogyne) and to utilize those in its control. Egg hatching of M. hapla was found to be inhibited by 17 plant methanol extracts, and 11 plant extracts among them were also toxic to M. hapla second stage juvenile. Egg hatching of iW. hapla was also found to be inhibited by squeezed extracts of Cassia tora and Zea mays, and they were also toxic to M. hapla second stage juvenile. Extracts of Achyranthes japonica, Melia axedrach and Acorus graminens were toxic to M. hapla second stage with a juvenile mortality above 70clc at the 10 folds diluted concent ration and A. graminens was toxic to tested juvenile mortality above 50% at the 100 folds diluted concentration. The toxicity was directly propotional to the diluted concentration of the plant extracts and to the exposure period. Punica granatum, Acorns graminens and Melia axedrach were effective in inhibiting root penetration of JW. hapla juveniles, among of them p. granatum is most effective Percent inhibition of penetration by second and third stage juveniles into tomato slants penetrating by it was 72.7 and 82.4%, respectively.

  • PDF

Occurrence and Distribution of Root-Knot Nematodes in Kiwifruit Orchard (국내 주요 참다래 재배지에 발생하는 뿌리혹선충 종류 및 분포)

  • Heonil Kang;Hwanseok Je;Insoo Choi
    • Research in Plant Disease
    • /
    • v.29 no.1
    • /
    • pp.45-51
    • /
    • 2023
  • The study was conducted to investigate the infestation and distribution of plant-parasitic nematodes on kiwi orchards in Korea. Plant parasitic nematodes genus and densities were investigated at a total of 102 sites in Jeollanam-do, Gyeongsangnam-do, and Jeju-do, which are the main production areas of domestic kiwi orchards. Plant parasitic nematodes detected were of 9 genera, including root-knot nematodes (Meloidogyne spp.), spiral nematodes (Helicotylenchus spp.), and needle nematodes (Paratylenchus spp.), and 56% of the 102 plantations were infected with root-knot nematodes. Root-knot nematodes were found to be the most important plant parasitic nematode in domestic kiwi orchards. The average density of root-knot nematodes is 97 per 300 cm3 soil, and there is concern about the kiwi yield reduction. As a result of identifying the root-knot nematode species: M. arenaria, M. hapla, M. incognita, and M. javanica. Among them, M. arenaria is the most dominant. As the plant parasitic nematode infection route in fruit trees is often spread through the transplantation of infected seedlings, attention should be paid to the production of nematode-free plants during the production and supply of kiwifruit plants.

Biocontrol Efficacy of Formulated Pseudomonas chlororaphis O6 against Plant Diseases and Root-Knot Nematodes

  • Nam, Hyo Song;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.241-249
    • /
    • 2018
  • Commercial biocontrol of microbial plant diseases and plant pests, such as nematodes, requires field-effective formulations. The isolate Pseudomonas chlororaphis O6 is a Gram-negative bacterium that controls microbial plant pathogens both directly and indirectly. This bacterium also has nematocidal activity. In this study, we report on the efficacy of a wettable powder-type formulation of P. chlororaphis O6. Culturable bacteria in the formulated product were retained at above $1{\times}10^8$ colony forming units/g after storage of the powder at $25^{\circ}C$ for six months. Foliar application of the diluted formulated product controlled leaf blight and gray mold in tomato. The product also displayed preventative and curative controls for root-knot nematode (Meloidogyne spp.) in tomato. Under laboratory conditions and for commercially grown melon, the control was at levels comparable to that of a standard commercial chemical nematicide. The results indicated that the wettable powder formulation product of P. chlororaphis O6 can be used for control of plant microbial pathogens and root-knot nematodes.

Effects of Root-knot Nematodes, Meloidogyne hapla, M. incognita, M. arenaria and M. javanica on Growth and Yield of Tomato (토마토에 대한 뿌리혹선충의 주요 종별 피해정도)

  • Cho H. J.;Kim C. H.;Park J. S.;Jeoung M. G.
    • Korean Journal Plant Pathology
    • /
    • v.3 no.3
    • /
    • pp.164-167
    • /
    • 1987
  • The effects of infection severity of susceptible tomato varieties, Rutgers and Boksu 2, by root-knot nematode, meloidogyne hapla, M. arenaria or M. javanica on plant growths and tomato yields were investigated. The inoculum levels of each nematode species were 0, 1,000 and 10,000 nematodes per 42cm diam. pot. Tomato yield was reduced by the nematode infection. Severity of infection was on the decreasing order of M. javanica, M. incognita, M. arenaria, M. hapla, ranging from $80\%$ by M. javanica to only $7\%$ by M. hapla. Yield reduction by infection of M. hapla was more prominent in Boksu 2 than in Rutgers. However the results were vice versa for the other nematode species, The top fresh-weight of Rutgers inoculated with 10,000 nematodes was greater than root weight, regardless of the nematode species, whereas plant height and top fresh weight decreased with increasing root weight when inoculated with inoculum density of 1,000/pot.

  • PDF

Development of Efficient Screening Methods for Resistant Cucumber Plants to Meloidogyne incognita (오이 뿌리혹선충병에 대한 효율적인 저항성 검정법 확립)

  • Hwang, Sung Min;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Jin-Cheol;Choi, Gyung Ja
    • Research in Plant Disease
    • /
    • v.20 no.2
    • /
    • pp.119-125
    • /
    • 2014
  • Root-knot nematodes represent a significant problem in cucumber, causing reduction in yield and quality. To develop screening methods for resistance of cucumber to root-knot nematode Meloidogyne incognita, development of root-knot nematode of four cucumber cultivars ('Dragonsamchuk', 'Asiastrike', 'Nebakja' and 'Hanelbakdadaki') according to several conditions such as inoculum concentration, plant growth stage and transplanting period was investigated by the number of galls and egg masses produced in each seedling 45 days after inoculation. There was no difference in galls and egg masses according to the tested condition except for inoculum concentration. Reproduction of the nematode on all the tested cultivars according to inoculum concentration increased in a dose-dependent manner. On the basis of the result, the optimum conditions for root-knot development on the cultivars is to transplant period of 1 week, inoculum concentration of 5,000 eggs/plant and plant growth stage of 3-week-old in a greenhouse ($25{\pm}5^{\circ}C$). In addition, under optimum conditions, resistance of 45 commercial cucumber cultivars was evaluated. One rootstock cultivar, Union was moderately resistant to the root-knot nematode. However, no significant difference was in the resistance of the others cultivar. According to the result, we suggest an efficient screening method for new resistant cucumber to the root-knot nematode, M. incognita.

Control Effect of Coffee Ground Compost and Velvet bean Against Root-Knot Nematode, Meloidogyne incognita in Pumpkin (커피박 퇴비와 벨벳콩을 이용한 호박의 고구마 뿌리혹선충 방제효과)

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Hong, Sung-Jun;Park, Jong-Ho;Han, Eun-Jung;Huh, Chang-Seok;Ryu, Young-Hyun;Jee, Hyeong-Jin;Kim, Seuk-Chul
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.1
    • /
    • pp.47-55
    • /
    • 2016
  • The purpose of this study was to control root-knot nematode, Meloidogyne incognita on pumpkin seedling with 10%, 20% coffee ground compost and 1% plant velvet bean powder (plain skin bean, leopard skin bean, hole plant, bean pod). Among the root-knot nematode insecticide treatments, the velvet bean plant powder was the highest mortality rate with 83.2% in greenhouse condition. In addition, the root-knot nematode second juvenile mortality significantly increased with the lapse of processing time for each concentration of leopard skin velvet bean extract in vivo. After 24 hours, the mortality rate of root-knot nematode showed the highest at 1.2% and 2.4% of leopard skin velvet bean extract. The growth promoting effect of seedlings pumpkin, 20% of coffee ground compost treatments inhibited the growth of pumpkin seedlings and 1% the tiger pattern velvet beans powder was the most to promote the growth of pumpkin seedlings. However, the results indicated that the organic materials of velvet beans and coffee ground compost are expected to be able to effectively control the root-knot nematode and further studies will be needed for the concentration and application methods.

Development of Meloidogyne arenaria on Oriental Melon (Cucumis melo L.) in Relation to Degree-day Accumulation Under Greenhouse Conditions

  • Kim, Dong-Geun;Yeon, Il-Kwon
    • The Plant Pathology Journal
    • /
    • v.17 no.3
    • /
    • pp.159-163
    • /
    • 2001
  • Influence of soil temperature [accumulated degree-day for the base temperature $5^{\circ}$($\textrm{DD}_5$)] on the development of Meloidogyne arenaria were studied in a winter grown oriental melon greenhouse in Seongju, Korea. Egg masses were first observed on roots at the accumulation of 565 $\textrm{DD}_5$(40 days after transplanting), suggesting that the nematode has completed the first generation in 40 days. Second-stage juveniles (J2) densities were lowest at 863 $\textrm{DD}_5$ in April, first increased at 1,334 $\textrm{DD}_5$ in May, peaked at 2,951 $\textrm{DD}_5$ in July, and decliner thereafter. Development of egg masses and J2 density in soil revealed that M. arenaria could develop in 7-8 generations in a year in the greenhouse. Degree-day monitoring, therefore, could aid to predict nematode development in soil and can be valuable tool a to develop root-knot nematode control strategies.

  • PDF

Effects of Soil Textures on Infectivity of Root-Knot Nematodes on Carrot

  • Kim, Eunji;Seo, Yunhee;Kim, Yong Su;Park, Yong;Kim, Young Ho
    • The Plant Pathology Journal
    • /
    • v.33 no.1
    • /
    • pp.66-74
    • /
    • 2017
  • This study was conducted to examine infectivity (penetration and gall and egg-mass formations) of the root-knot nematodes, Meloidogyne incognita and M. hapla, on carrots grown in soil conditions of 5 different soil textures consisting of bed-soil (b) and sand (s) mixtures (b-s mixtures) at the ratios of 10:0, 7:3, 5:5, 3:7, and 0:10. For M. incognita, the nematode penetration rates in b-s of 0:10 (100% sand) were significantly higher than in the other b-s mixtures, more greatly at 2 and 5 days after inoculation than at 10 DAI, while no significant differences in the penetration rates were mostly shown for M. hapla at the above DAI. However, for both nematodes, gall and egg-mass formations were remarkably increased in the b-s mixture of 0:10, compared to the other b-s mixtures, which is coincided with the general aspects of severe nematode infestations in sandy soils. This suggests the increased gall and egg-mass formations of M. incognita should be derived from the increased penetration rates in the sandy soil conditions, which provide a sufficient aeration due to coarse soil nature for the nematodes, leading to their mobility increased for the enhanced root penetration. For M. hapla, it is suggested that the sandy soil conditions affect positively on the healthy plant growth with little accumulation of the inhibitory materials and sufficient aeration, enhancing the nematode growth and feeding activities. All of these aspects provide information reliable for the development screening techniques efficient for the evaluation of the nematode resistance in the breeding programs.