• Title/Summary/Keyword: plant pigment

Search Result 155, Processing Time 0.022 seconds

Pigment and Saikosoponin Production Through Bioreactor Culture of Carthamus tinctorius and Bupleurum falcatum

  • Wenyuan Gao;Lei Fan;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • Traditional culture technology of medicinal plants mainly depends on the field culture, which has many problems. With progress of modern culture technology, it has become possible to produce valuable secondary metabolites from medicinal plants. In this paper, we discuss about the pigment and saikosaponin production from too medicinal plants, Carthamus tinctorius and Bupleurum falcatum, through bioreactor culture system. A two-stage bioreactor culture system was established for the production of yellow and red pigments and saikosaponins by cell suspension cultures of Carthamus tinctorius and Bupleurum falcatum. In Carthamus tinctorius, balloon type airlift bioreactors and column type airlift bioreactors were employed for the tell culture and for the pigment production, respectively. The greatest pigment production was obtained on White medium supplemented with 4 mg/L kinetin, high levels of sucrose concentration and photosynthetic photon flux. In Bupleurum falcatum, adventitious roots were cultured in balloon type airlift bioreactors and the root growth was greatest on SH medium containing 5 mg/L IBA and 0.2 mg/L kinetin. HPLC analysis showed that the contents of main active saikosaponins a, c, and d in adventitious roots were almost the same as those in field cultured root.

  • PDF

Mass Production and Identification of Anthocyanin in Cell Cultures of Euphorbia splendens Bojer (꽃기린 (Euphorbia splendens Bojer) 배양세포로부터 화청소의 대량생산 및 동정)

  • 선정훈;정재동
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.2
    • /
    • pp.77-84
    • /
    • 1994
  • To assess the feasibility of anthocyanin production in cell cultures of Euphorbia splendens Bojer the role of sucrose in pigment production was investigated and pilot scale cultures were attempted to establish mass production system. And also, several instrumental analyses were conducted to identify the pigment extracted from cultured rolls. Anthocyanin production was promoted prominently with concenetrations of sucrose ranging from 3% to 9% while cell growth was maximized at 3% of sucrose . This suggested that high osmolarity of sucrose enhance pigment production. When cells were cultured in two types of bioreactor better cell growth was achieved with draft-type air lift bioreactor than impeller type bioreactor and the pigment productivity was reached to 2.2 mg/L/day. The major pigment extracted from cultured cells was characterized as cyanidin-3-glucoside.

  • PDF

Analysis on the Pigment Composition of Phytoplankton Assemblages using HPLC (High Performance Liquid Chromatography) in the Adjacent Waters of Nuclear Power Plants in Spring

  • Choi, Hyu-Chang;Kang, Yeon-Shik;Choi, Joong-Ki;Song, Tae-Yoon;Yoo, Man-Ho
    • Journal of the korean society of oceanography
    • /
    • v.39 no.4
    • /
    • pp.234-242
    • /
    • 2004
  • The pigment composition and concentration of phytoplankton assemblages using HPLC in the adjacent waters of four nuclear power plants (Yonggwang, Kori, Wolsong and Ulchin) were investigated during the spring blooming in 2004. The mean concentration of chlorophyll a ranged from 563.8 to 2,949.0ng $l^{-1}$, with the lowest concentration at Kori and the highest concentration at Wolsong. Among the carotenoids, the amounts of fucoxanthin and chlorophyll $C_2$ were relatively higher than those of other pigments in the study site. As minor pigments, zeaxanthin, chlorophyll b, 19'-butanoyloxyfucoxanthin, diadinoxanthin, 19'-hexanoyloxyfucoxanthin, chlorophyll $C_3$ and peridinin were detected. The results of pigment composition and concentration showed that diatoms had an important proportion of phytoplankton community when a spring bloom occurred. Cyanobacteria was present relatively low density at the Wolsong and the green alga such as chlorophytes and prasinophytes were abundant at the Yonggwang and Kori, while dinoflagellates characterized by peridinin were common at Ulchin and Kori. The pigment composition and concentration of phytoplankton after passing through the cooling-water system of nuclear power plant were highly variable. No distinct trend of the change of each pigment composition and amount was detected but the variation of fucoxanthin and chlorophyll $C_2$ highly coupled with that of chlorophyll a. We pointed out that the diatom controlled the overall variation of phytoplankton biomass during the spring season.

Effects of Heavy Metals on Plant Growths and Pigment Contents in Arabidopsis thaliana

  • Baek, Seung-A;Han, Taejun;Ahn, Soon-Kil;Kang, Hara;Cho, Myung Rae;Lee, Suk-Chan;Im, Kyung-Hoan
    • The Plant Pathology Journal
    • /
    • v.28 no.4
    • /
    • pp.446-452
    • /
    • 2012
  • The effect of heavy metals on seedling growth and pigment levels was studied in Arabidopsis using essential (Cu, Mn, and Zn) and non-essential metals (Pb and Hg). Generally increasing the concentrations of the metals resulted in a gradual decrease in root and shoot lengths, a decrease in chlorophylls, an increase in anthocyanins and a fluctuation in carotenoid content depending on the metal types. The toxicity of the metals decreased in the following order: Cu > Hg > Pb > Zn > Mn. Among the five metals, Cu was exceptionally toxic and the most potent inducer of anthocyanins. Pb induced the smallest quantity of anthocyanins but it was the strongest inducer of carotenoids. It suggests that the Cu-stressed Arabidopsis may use anthocyanins as its main antioxidants while the Pb-stressed Arabidopsis use carotenoids as its main protectants. All of the five metals induced an accumulation of anthocyanins. The consistent increase in anthocyanin content in the metal-stressed Arabidpsis indicates that anthocyanins play a major role in the protection against metal stresses.

Simultaneous Analysis of the Coloring Compounds in Indigo, Phellodendron bark, and Madder Dye Using HPLC-DAD-MS

  • Ahn, Cheunsoon;Zeng, Xia;Obendorf, S. Kay
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.6
    • /
    • pp.827-836
    • /
    • 2013
  • Indigotin, indirubin, berberine, palmatine, alizarin, and purpurin are major pigments of indigo plant, Phellodendron bark, and madder. The six pigments were examined using the HPLC-DAD-MS instrument for the purpose of the simultaneous detection of the pigments in a single sample run. The HPLC-DAD-MS method examined the individual pigment solutions in DMSO, a solution containing 6 pigments, and the DMSO extract of the silk dyed with a dye solution of 5 pigments excluding indirubin. The retention times of the HPLC chromatograms, ${\lambda}_{max}$ of the uv-vis absorption bands in the DAD analyses, and the molecular ions detected for the compound peaks in the MSD analyses were consistent throughout the analyses of individual pigment solutions, mixed pigment solutions, and dye extracted from silk dyeing. The developed instrumental method of the simultaneous detection of six pigments can identify dye in an exhumed textile if the textile is dyed using any one (or multiple) pigments of indigo, Phellodendron bark, or madder plant.

Statistical Optimization for Monacolin K and Yellow Pigment Production and Citrinin Reduction by Monascus purpureus in Solid-State Fermentation

  • Jirasatid, Sani;Nopharatana, Montira;Kitsubun, Panit;Vichitsoonthonkul, Taweerat;Tongta, Anan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.364-374
    • /
    • 2013
  • Monacolin K and yellow pigment, produced by Monascus sp., have each been proven to be beneficial compounds as antihypercholesterolemic and anti-inflammation agents, respectively. However, citrinin, a human toxic substance, was also synthesized in this fungus. In this research, solidstate fermentation of M. purpureus TISTR 3541 was optimized by statistical methodology to obtain a high production of monacolin K and yellow pigment along with a low level of citrinin. Fractional factorial design was applied in this study to identify the significant factors. Among the 13 variables, five parameters (i.e., glycerol, methionine, sodium nitrate, cultivation time, and temperature) influencing monacolin K, yellow pigment, and citrinin production were identified. A central composite design was further employed to investigate the optimum level of these five factors. The maximum production of monacolin K and yellow pigment of 5,900 mg/kg and 1,700 units/g, respectively, and the minimum citrinin concentration of 0.26 mg/kg were achieved in the medium containing 2% glycerol, 0.14% methionine, and 0.01% sodium nitrate at $25^{\circ}C$ for 16 days of cultivation. The yields of monacolin K and yellow pigment were about 3 and 1.5 times higher than the basal medium, respectively, whereas citrinin was dramatically reduced by 36 times.

Increased Carotenoid Production in Xanthophyllomyces dendrorhous G276 Using Plant Extracts

  • Kim, Soo-Ki;Lee, Jun-Hyeong;Lee, Chi-Ho;Yoon, Yoh-Chang
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.128-132
    • /
    • 2007
  • The red yeast Xanthophyllomyces dendrorhous (previously named Phaffia rhodozyma) produces astaxanthin pigment among many carotenoids. The mutant X. dendrorhous G276 was isolated by chemical mutagenesis. The mutant produced about 2.0 mg of carotenoid per g of yeast cell dry weight and 8.0 mg/L of carotenoid after 5 days batch culture with YM media; in comparison, the parent strain produced 0.66 mg/g of yeast cell dry weight and a carotenoid concentration of 4.5 mg/L. We characterized the utilization of carbon sources by the mutant strain and screened various edible plant extracts to enhance the carotenoid production. The addition of Perilla frutescens (final concentration, 5%) or Allium fistulosum extracts (final concentration, 1%) enhanced the pigment production to about 32 mg/L. In a batch fermentor, addition of Perilla frutescens extract reduced the cultivation time by two days compared to control (no extract), which usually required five-day incubation to fully produce astaxanthin. The results suggest that plant extracts such as Perilla frutescens can effectively enhance astaxanthin production.

Plant Regeneration from the Stem Tissue of Orostachys japonicus A. Berger (바위솔의 줄기조직으로부터 식물체 재분화)

  • 최상욱;남상해;양기종;조무제;양민석
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.2
    • /
    • pp.65-68
    • /
    • 1994
  • Plant regeneration from the stem tissue of Orostachys japonicus A. Beiger was investigated. The calli derived from shoot apex when apex when cultured on Murashige and Skoog (MS) medium supplemented with 4mg/L 2,4-dichlorophenoxyacetic acid (2,4-D)and 2 mg/L benzyl aminopurine (BAP). The calli were developed into shoot to MS medium with 0.5mg/L NAA and 2mg/L and into root with 1mg/L kinetin. The reddish pigment which might be essential for the rootregeneration was observed in the tip of regenerated root.

  • PDF

Recent researches on Sapstaining Fungi Colonizing Pines

  • Kim, Seong-Hwan
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • During last decade there has been noticeable progress in the research of the biology of sapstaining fungi that cause considerable economic losses to forest product industry. The researches generated broad ranges of knowledge on sapstaining fungi regarding their occurrence on conifer wood, taxonomy, nutrient physiology, pigmentation biochemistry and molecular biology, and biological control. Major problematic groups in the sapstain production are Ophiostoma, Ceratocystis, and Leptographium genera. With Ophiostoma as a model, it is found that the type of carbon source is important in the growth and pigment production of sapstaining fungi. The operation of dihydroxy naphthalene (DHN) melanin pathway for black to bluish pigment production has been confirmed in those cosmetic fungi both at biochemical and molecular levels. The development of albino technology using nutrition competition has been shown to be promising as an environmentally friendly biological control method for sapstain control.

식용작물재배 LED 등기구 모듈개발

  • Song, Yong-Jong;Choe, Hyeon-Ho;Lee, Mun-Ho;Kim, Yeong-Pyo;Lee, Ho-Sik;Song, Min-Jong;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.284-284
    • /
    • 2009
  • The LED of cultivation edible plants was compliance the variable of the photo-receptor pigment with the red light source and ultra red light source from long wave region. The mechanism of cultivation edible plants for each part was necessary the wavelength unit which is appropriate, the illuminant source, motor control and lens design of LED light source about plant. The photo-receptor pigment induces for a long daytime recognition, seed germination and anthesis etc, induction years exists in the state which is an inactivity within the cells and in compliance with the red light source to be converted in active

  • PDF