DOI QR코드

DOI QR Code

Simultaneous Analysis of the Coloring Compounds in Indigo, Phellodendron bark, and Madder Dye Using HPLC-DAD-MS

  • Ahn, Cheunsoon (Dept. of Fashion Industry, Incheon National University) ;
  • Zeng, Xia (Dept. of Fiber Science & Apparel Design, Cornell University) ;
  • Obendorf, S. Kay (Dept. of Fiber Science & Apparel Design, Cornell University)
  • Received : 2013.07.09
  • Accepted : 2013.08.14
  • Published : 2013.08.31

Abstract

Indigotin, indirubin, berberine, palmatine, alizarin, and purpurin are major pigments of indigo plant, Phellodendron bark, and madder. The six pigments were examined using the HPLC-DAD-MS instrument for the purpose of the simultaneous detection of the pigments in a single sample run. The HPLC-DAD-MS method examined the individual pigment solutions in DMSO, a solution containing 6 pigments, and the DMSO extract of the silk dyed with a dye solution of 5 pigments excluding indirubin. The retention times of the HPLC chromatograms, ${\lambda}_{max}$ of the uv-vis absorption bands in the DAD analyses, and the molecular ions detected for the compound peaks in the MSD analyses were consistent throughout the analyses of individual pigment solutions, mixed pigment solutions, and dye extracted from silk dyeing. The developed instrumental method of the simultaneous detection of six pigments can identify dye in an exhumed textile if the textile is dyed using any one (or multiple) pigments of indigo, Phellodendron bark, or madder plant.

Keywords

References

  1. Ahn, C., & Obendorf, S. K. (2004). Dyes on archaeological textiles: Analyzing alizarin and its degradation products. Textile Research Journal, 74(11), 949-954. https://doi.org/10.1177/004051750407401102
  2. Ahn, C., Zeng, X., & Obendorf, S. K. (2012). Analysis of dye extracted from Phellodendron bark and its identification in archaeological textiles. Textile Research Journal, 82 (16), 1645-1658. https://doi.org/10.1177/0040517511431316
  3. Casas-Catalan, M. J., & Domenech-Carbo, M. T. (2005). Identification of natural dyes used in works of art by pyrolysis-gas chromatography/mass spectrometry combined with in situ trimethylsilylation. Analytical and Bioanalytical Chemistry, 382(2), 259-268. https://doi.org/10.1007/s00216-005-3064-0
  4. Cayman Chemical. (2012, June 28). Purpurin. Product information. Retrieved July 2, 2013, from https://www.caymanchem.com/pdfs/11752.pdf
  5. Choo, C. K. K., Lau, K. S., & Lee, Y. E. (2002). Analysis of dyeings produced by traditional Korean methods using colorants from plant extracts. Coloration Technology, 118 (1), 35-45. https://doi.org/10.1111/j.1478-4408.2002.tb00135.x
  6. Colombini, M. P., Andreotti, A., Baraldi, C., Degano, I., & Lucejko, J. J. (2007). Colour fading in textiles: A model study on the decomposition of natural dyes. Microchemical Journal, 85(1), 174-182. https://doi.org/10.1016/j.microc.2006.04.002
  7. Grosjean, D., Whitmore, P. M., De Moor, C. P., Cass, G. R., & Druzik, J. R. (1987). Fading of alizarin and related artists' pigments by atmospheric ozone: Reaction products and mechanisms. Environmental Science & Technology, 21(7), 635-643. https://doi.org/10.1021/es00161a003
  8. Lee, Y., Lee, J., Kim, Y., Choi, S., Ham, S. W., & Kim, K. J. (2008). Investigation of natural dyes and ancient textiles from Korea using TOF-SIMS. Applied Surface Science, 255(4), 1033-1036. https://doi.org/10.1016/j.apsusc.2008.05.097
  9. Mantzouris, D., Karapanagiotis, I., Valianou, L., & Panayiotou, C. (2011). HPLC-DAD-MS analysis of dyes identified in textiles from Mount Athos. Analytical and Bioanalytical Chemistry, 399(9), 3065-3079. https://doi.org/10.1007/s00216-011-4665-4
  10. Oh, J., & Ahn, C. (2013). Analysis of the pigment contents of commercial indigo powders and their effect on the color and the antimicrobial function of dyed cotton fabrics. Journal of the Korean Society of Clothing and Textiles, 37(1), 17-26. https://doi.org/10.5850/JKSCT.2013.37.1.17
  11. Petroviciu, I., Albu, F., & Medvedovici, A. (2010). LC/MS and LC/MS/MS based protocol for identification of dyes in historic textiles. Microchemical Journal, 95(2), 247-254. https://doi.org/10.1016/j.microc.2009.12.009
  12. Petroviciu, I., Medvedovici, A., Albu, F., Cretu, I., & Vanden Berghe, I. (2012). LC-MS as analytical technique for the identification of natural dyes in historic textiles. Romanian Reports in Physics, 64(2), 507-515.
  13. Ren, L., Xue, X., Zhang, F., Xu, Q., & Liang, X. (2007). High performance liquid chromatography-mass spectrometry analysis of protoberberine alkaloids in medicine herbs. Journal of Separation Science, 30(6), 833-842. https://doi.org/10.1002/jssc.200600246
  14. Schweppe, H. (1989). Identification of red madder and insect dyes by thin-layer chromatography. In S. H. Zeronian & H. L. Needles (Eds.), Historic textile and paper materials II: Conservation and characterization (pp. 188-219). Washington DC: American Chemical Society.
  15. Sigma-Aldrich. (2012, December 3). Material safety data sheet Version 3.2. Sigma-Aldrich. Retrieved July 3, 2013, from http://www.sigmaaldrich.com/MSDS/MSDS/Display-MSDSPage.do?country=US&language=en&productNumber=229148&brand=SIAL&PageToGoToURL=http%-3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsial%2F229148%3Flang%3Den
  16. Soltzberg, L. J., Hagar, A., Kridaratikorn, S., Mattson, A., & Newman, R. (2007). MALDI-TOF mass spectrometric identification of dyes and pigments. Journal of American Society of Mass Spectrometry, 18(11), 2001-2006. https://doi.org/10.1016/j.jasms.2007.08.008
  17. Valianou, L., Stathopoulou, K., Karapanagiotis, I., Magiatis, P., Pavlidou, E., Skaltsounis, A. L., & Chryssoulakis, Y. (2009). Phytochemical analysis of young fustic (Cotinus coggygria heartwood) and identification of isolated colourants in historical textiles. Analytical and Bioanalytical Chemistry, 394(3), 871-882. https://doi.org/10.1007/s00216-009-2767-z
  18. Wikipedia. (2013a, April 17). Chromatography detector. Wikipedia, the free encyclopedia. Retrieved June 30, 2013, from https://en.wikipedia.org/wiki/Chromatogra-phy_detector
  19. Wikipedia. (2013b, June 25). High-performance liquid chromatography. Wikipedia, the free encyclopedia. Retrieved June 30, 2013, from http://en.wikipedia.org/wiki/Highperformance_liquid_chromatography
  20. Zhang, J., Jin, Y., Dong, J., Xiao, Y., Feng, J., Xue, X., Zhang, X., & Liang, X. (2009). Systematic screening and characterization of tertiary and quaternary alkaloids from corydalis yanhusuo W. T. Wang using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Talanta, 78(2), 513-522. https://doi.org/10.1016/j.talanta.2008.12.002
  21. Zhang, X., Boytner, R., Cabrera, J. L., & Laursen, R. (2007). Identification of yellow dye types in Pre-Columbian Andean textiles. Analytical Chemistry, 79(4), 1575-1582. https://doi.org/10.1021/ac061618f

Cited by

  1. Comparison of Hwangbek Dyeability for Cotton, Silk, and Wool from Different Tree Species and Origin vol.38, pp.1, 2014, https://doi.org/10.5850/JKSCT.2014.38.1.110
  2. High-performance liquid chromatography-diode array detector-mass selective detector analysis of major natural dyes with the application of H2O2/ultraviolet treatment as a way to simulate burial degradation of textiles vol.85, pp.3, 2015, https://doi.org/10.1177/0040517514545258
  3. Thermal degradation of natural dyes and their analysis using HPLC-DAD-MS vol.1, pp.1, 2014, https://doi.org/10.1186/s40691-014-0022-5
  4. Novel highly stable β-cyclodextrin fullerene mixed valent Fe-metal framework for quick Fenton degradation of alizarin vol.7, pp.64, 2017, https://doi.org/10.1039/C7RA06447K