Browse > Article
http://dx.doi.org/10.4014/jmb.1206.06068

Statistical Optimization for Monacolin K and Yellow Pigment Production and Citrinin Reduction by Monascus purpureus in Solid-State Fermentation  

Jirasatid, Sani (Division of Biotechnology, School of Bioresources and Technology)
Nopharatana, Montira (Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi)
Kitsubun, Panit (Biochemical Engineering and Pilot Plant Research and Development Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut's University of Technology Thonburi)
Vichitsoonthonkul, Taweerat (Division of Biotechnology, School of Bioresources and Technology)
Tongta, Anan (Division of Biotechnology, School of Bioresources and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.3, 2013 , pp. 364-374 More about this Journal
Abstract
Monacolin K and yellow pigment, produced by Monascus sp., have each been proven to be beneficial compounds as antihypercholesterolemic and anti-inflammation agents, respectively. However, citrinin, a human toxic substance, was also synthesized in this fungus. In this research, solidstate fermentation of M. purpureus TISTR 3541 was optimized by statistical methodology to obtain a high production of monacolin K and yellow pigment along with a low level of citrinin. Fractional factorial design was applied in this study to identify the significant factors. Among the 13 variables, five parameters (i.e., glycerol, methionine, sodium nitrate, cultivation time, and temperature) influencing monacolin K, yellow pigment, and citrinin production were identified. A central composite design was further employed to investigate the optimum level of these five factors. The maximum production of monacolin K and yellow pigment of 5,900 mg/kg and 1,700 units/g, respectively, and the minimum citrinin concentration of 0.26 mg/kg were achieved in the medium containing 2% glycerol, 0.14% methionine, and 0.01% sodium nitrate at $25^{\circ}C$ for 16 days of cultivation. The yields of monacolin K and yellow pigment were about 3 and 1.5 times higher than the basal medium, respectively, whereas citrinin was dramatically reduced by 36 times.
Keywords
Monacolin K; yellow pigment; citrinin; fractional factorial design; response surface method; Monascus;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Chen, M. H. and M. R. Johns. 1994. Effect of carbon source on ethanol and pigment production by Monascus purpureus. Enzyme Microb. Technol. 16: 584-590.   DOI   ScienceOn
2 Chung, C. C., T. C. Huang, and H. H. Chen. 2009. The optimization of Monascus fermentation process for pigments increment and citrinin reduction, pp. 77-83. 9th IEEE International Conference on Bioinformatics and Bioengineering.
3 Czyzewski, B. K. and D. N. Wang. 2012. Identification and characterization of a bacterial hydrosulphide ion channel. Nature 483: 494-498.   DOI   ScienceOn
4 Hajjaj, H., A. Klaebe, M. O. Loret, G. Goma, P. J. Blanc, and J. Francois. 1999. Biosynthetic pathway of citrinin in the filamentous fungus Monascus ruber as revealed by 13C nuclear magnetic resonance. Appl. Environ. Microbiol. 65: 311-314.
5 Demain, A. L. 1986. Regulation of secondary metabolism in fungi. Pure Appl. Chem. 58: 219-226.   DOI
6 González, J. B. and R. U. Miranda. 2010. Biotechnological production and applications of statins. Appl. Microbiol. Biotechnol. 85: 869-883.   DOI
7 Hajjaj, H., A. Klaebe, G. Goma, P. J. Blanc, E. Barbier, and J. Francois. 2000. Medium-chain fatty acids affect citrinin production in the filamentous fungus Monascus ruber. Appl. Environ. Microbiol. 66: 1120-1125.   DOI
8 Harry, M. J., P. S. Mann, O. C. D. Hodgins, R. L. Hulbert, and C. J. Lacke. 2010. Practition's Guide to Statistics and Lean Six Sigma for Process Improvements. John Wiley & Sons, New Jersey.
9 Jirasatid, S., M. Nopharatana, and A. Tongta. 2006. Effect of degree of gelatinization of rice on growth and pigments production of Monascus purpureus. 8th Food Innovation Asia Conference, Bangkok.
10 Juzlova, P., L. Martinkova, and V. Kren. 1996. Secondary metabolites of the fungus Monascus: A review. J. Ind. Microbiol. 16: 163-170.   DOI   ScienceOn
11 Lee, C. L., Y. H. Kung, C.L. Wu, Y. W. Hsu, and T. M. Pan. 2010. Monascin and ankaflavin act as novel hypolipidemic and high-density lipoprotein cholesterol-raising agents in red mold dioscorea. J. Agric. Food Chem. 58: 9013-9019.   DOI   ScienceOn
12 Lee, C. L., J. J. Wang, S. L. Kuon, and T. M. Pan. 2006. Monascus fermentation of dioscorea for increasing the production of cholesterol-lowering agent-monacolin K and antiinflamation agent-monascin. Appl. Microbiol. Biotechnol. 72: 1254-1262.   DOI   ScienceOn
13 Miyake, T., A. Mori, T. Kii, T. Okuno, Y. Usui, F. Sato, et al. 2005. Light effects on cell development and secondary metabolism in Monascus. J. Ind. Microbiol. Biotechnol. 32: 103-108.   DOI
14 Lin, C. F. 1973. Isolation and culture conditions of Monascus sp. for the production of pigment in a submerged culture. J. Ferment. Technol. 51: 407-414.
15 Liu, J., J. Xing, T. Chang, Z. Ma, and H. Liu. 2005. Optimization of nutritional conditions for nattokinase production by Bacillus natto NLSSE using statistical experimental method. Process Biochem. 40: 2757-2762.   DOI   ScienceOn
16 Manzoni, M. and M. Rollini. 2002. Biosynthesis and biotechnology production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl. Microbiol. Biotechnol. 58: 555-564.   DOI   ScienceOn
17 Moore, R. N., G. Bigam, J. K. Chan, A. M. Hoog, T. T. Nakashima, and J. C. Vederas. 1985. Biosynthesis of the hypocholesterolemic agent mevinolin by Aspergillus terreus. Determination of the origin of carbon, hydrogen, and oxygen atoms by $^{13}C$ NMR and mass spectroscopy. J. Am. Chem. Soc. 107: 3694-3701.   DOI
18 Panda, B. P., S. Javed, and M. Ali. 2009. Statistical analysis and validation of process parameters influencing lovastatin production by Monascus purpureus MTCC 369 under solid-state fermentation. Biotechnol. Bioproc. Eng. 14: 123-127.   DOI   ScienceOn
19 Panda, B. P., S. Javed, and M. Ali. 2010. Optimization of fermentation parameters for higher monacolin K production in red mold rice through co-culture of Monascus purpureus and Monascus ruber. Food Bioproc. Technol. 3: 373-378.   DOI
20 Sanchez, S. and A. Demain. 2002. Metabolic regulation of fermentation processes. Enzyme Microb. Technol. 31: 895-906.   DOI   ScienceOn
21 Babitha, S., J. C. Carvaho, C. R. Soccol, and A. Pandey. 2008. Effect of light on growth, pigment production and culture morphology of Monascus purpureus in solid-state fermentation. World J. Microbiol. Biotechnol. 24: 2671-2675.   DOI
22 Chen, F. and X. Hu. 2005. Study on red fermented rice with high concentration of monacolin K and low concentration of citrinin. Int. J. Food Microbiol. 103: 331-337.   DOI   ScienceOn
23 Aidoo, K. E., R. Handry, and B. J. B Wood. 1981. Estimation of fungal growth in a solid state fermentation system. Eur. J. Appl. Microbiol. Biotechnol. 12: 6-9.   DOI
24 Aparecida, S., G. Mossini, and C. Kemmelmeier. 2008. Inhibition of citrinin production in Penicillium citrinum cultures by neem [Azadirachta indica A. Juss (Meliaceae)]. Int. J. Mol. Sci. 9: 1676-1684.   DOI   ScienceOn
25 Blanc, P. J., M. O. Loret, and G. Goma. 1995. Production of citrinin by various species of Monascus. Biotechnol. Lett. 3: 291-294.
26 Bouillaud, F. and F. Blachier. 2011. Mitochondria and sulfide: A very old story of poisoning, feeding, and signaling. Antioxid. Redox Signal. 15: 379-391.   DOI   ScienceOn
27 Chen, M. H. and M. R. Johns. 1993. Effect of pH and nitrogen source on pigment production by Monascus purpureus. Appl. Microbiol. Biotechnol. 40: 132-138.
28 Rodriguez-Duran, L. V., J. C. Contreras-Esquivel, R. Rodriguez, A. Prado-Barragan, and C. N. Aguilar. 2011. Optimization of tannase production by Aspergillus niger in solid-state packedbed bioreactor. J. Microbiol. Biotechnol. 21: 960-967.   DOI   ScienceOn
29 Pattanagul, P., R. Pinthong, A. Phianmongkhol, and S. Tharatha. 2008. Mevinolin, citrinin and pigments of adlay angkok fermented by Monascus sp. Int. J. Food Microbiol. 126: 20-23.   DOI   ScienceOn
30 Rani, M. U., N. K. Rastogi, and K. A. Ann Appaiah. 2011. Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract - an agro-industry waste. J. Microbiol. Biotechnol. 21: 739-745.   DOI   ScienceOn
31 Seraman, S., A. Rajendran, and V. Thangavelu. 2010. Statistical optimization of anticholesterolemic drug lovastatin production by the red mold Monascus purpureus. Food Bioprod. Proc. 88: 266-276.   DOI   ScienceOn
32 Su, Y. C., J. J. Wang, T. T. Lin, and T. M. Pan. 2003. Production of the secondary metabolites g-aminobutyric acid and monacolin K by Monascus. J. Ind. Microbiol. Biotechnol. 30: 41-46.
33 Su, Y. C., Y. L. Lin, M. H. Lee, and C. Y. Ho. 2005. Ankaflavin from Monacus-fermented red yeast rice exhibits selective cytotoxic effects and increase cell death on HepG2 cells. J. Agric. Food Chem. 53: 1949-1954.   DOI   ScienceOn
34 Teng, S. S. and W. Feldheim. 2000. The fermentation of rice for anka pigment production. J. Ind. Microbiol. Biotechnol. 25: 141-146.   DOI
35 Wang, J. J., C. L. Lee, and T. M. Pan. 2004. Modified mutation method for screening low citrinin-producing strain of Monascus pupureus on rice culture. J. Agric. Food Chem. 52: 6977-6982.   DOI   ScienceOn
36 Teng, S. S. and W. Feldheim. 2001. Anka and anka pigment production. J. Ind. Microbiol. Biotechnol. 26: 280-282.   DOI
37 Vazquez, B. I., C. Fente, C. M. Franco, M. J. Vazquez, and A. Cepeda. 2001. Inhibitory effects of eugenol and thymol on Penicillium citrinum strains in culture media and cheese. Int. J. Food Microbiol. 67: 157-163.   DOI   ScienceOn
38 Xu, B. J., Q. W. Wang, X. Q. Jia, and C. K. Sung. 2005. Enhanced lovastatin production by solid state fermentation of Monascus ruber. Biotechnol. Bioproc. Eng. 10: 78-84.   DOI   ScienceOn
39 Wang, J. J., C. L. Lee, and T. M. Pan. 2003. Improvement of monacolin K, g-amino butyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. J. Ind. Microbiol. Biotechnol. 33: 669-676.
40 Wang, Z. W. and X. L. Liu. 2008. Medium optimization for antifungal active substances production from a newly isolated Paenibacillus sp. using response surface methodology. Bioresour. Technol. 99: 8245-8251.   DOI   ScienceOn
41 Yongsmith, B., V. Kitprechavanich, L. Chitradon, C. Chaisrisook, and N. Budda. 2000. Color mutants of Monascus sp. KB9 and their comparative glucoamylase on rice solid culture. J. Mol. Catal. B Enz. 10: 263-272.   DOI   ScienceOn