• Title/Summary/Keyword: plant natural compound

Search Result 210, Processing Time 0.026 seconds

Analysis of Essential Oil Composition of Solidago virga-aurea var. asiatica Nakai with Different Extraction Methods (추출방법에 따른 미역취의 정유 성분 분석)

  • Choi, Hyang-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.2
    • /
    • pp.153-161
    • /
    • 2016
  • This study investigated the chemical composition of Solidago virga-aurea var. asiatica Nakai essential oils collected using different extraction methods. The essential oils obtained by simultaneous steam distillation extraction (SDE) and hydrodistillation extraction (HDE) methods from the aerial parts of Solidago virga-aurea var. asiatica Nakai were analyzed by GC and GC-MS. Ninety-nine volatile flavor compounds were identified in the essential oil produced from Solidago virga-aurea var. asiatica Nakai using the SDE method. These compounds were classified into eight categories in terms of chemical functionality: 26 hydrocarbons, 8 aldehydes, 36 alcohols, 7 ketones, 12 esters, 5 oxides and epixides, 4 acids, and a miscellaneous one. Spathulenol (15.66%) was the most abundant compound. Ninety-eight compounds including of 35 hydrocarbons, 6 aldehydes, 29 alcohols, 6 ketones, 10 esters, 4 oxides and epixides, 7 acids, and a miscellaneous one were identified in the essential oil from the plant using the HDE method. Hexadecanoic acid (24.74%) was the most abundant compound. The chemical composition of Solidago virga-aurea var. asiatica Nakai essential oils extracted by SDE and HDE methods are characterized by high content of sesquiterpene alcohols and acids, respectively. The extraction methods may be influenced in the chemical composition of natural plant essential oils.

Molecular Networking-based De-replication Strategy Leads to the Isolation of a New Chromone from Pleosporales sp.

  • Kwon, Haeun;Kim, Jun Gu;Oh, Jeong-Joo;Kim, Jae-Jin;Kim, Gyu-Hyeok;Hwang, Bang Yeon;Yim, Joung Han;Lee, Dongho
    • Natural Product Sciences
    • /
    • v.26 no.4
    • /
    • pp.340-344
    • /
    • 2020
  • A new chromone analogue (1) was isolated from an EtOAc-extract of Pleosporales sp. culture medium, together with five known chromones (2 - 6). The isolation workflow was guided by a Molecular Networking-based dereplication strategy. The chemical structure of the new compound was elucidated using NMR and MS spectroscopy, and the absolute configuration was established by the Mosher's method. All isolated compounds were evaluated for their inhibitory effects on lipopolysaccharide-induced nitirc oxide production in RAW 264.7 macrophages. Compound 1 showed marginal inhibitory activity with an IC50 value of 118.7 μM.

Nematicidal Compounds from the Leaves of Schinus terebinthifolius Against Root-knot Nematode, Meloidogyne incognita Infecting Tomato

  • Abdel Bar, Fatma M.;Ibrahim, Dina S.;Gedara, Sahar R.;Abdel-Raziq, Mohammed S.;Zaghloul, Ahmed M.
    • Natural Product Sciences
    • /
    • v.24 no.4
    • /
    • pp.272-283
    • /
    • 2018
  • The root-knot nematode, Meloidogyne incognita caused a serious damage to many plants. The phenolic components of the leaves of Schinus terebinthifolius were investigated as potential nematicidal agents for M. incognita. Nine compounds were isolated and characterized as viz., 1,2,3,4,6-pentagalloyl glucose (1), kaempferol-3-O-${\alpha}$-L-rhamnoside (Afzelin) (2), quercetin-3-O-${\alpha}$-L-rhamnoside (Quercetrin) (3), myricetin (4), myricetin-3-O-${\alpha}$-L-rhamnoside (Myricetrin) (5), methylgallate (6), protocatechuic acid (7), quercetin (8), and gallic acid (9) using nuclear magnetic resonance (NMR) spectroscopy. Compound 1 showed pronounced nematicidal activity compared to Oxamyl as a positive control. It showed the lowest eggs-hatchability (34%) and the highest mortality in nematode population (21% after 72 hours of treatment) at a concentration of $200{\mu}g/mL$. It exhibited the best suppressed total nematode population, root galling and number of eggmasses in infected tomato plants. The total carbohydrates and proteins were also significantly induced by 1 with reduction in total phenolics and increase in defense-related proteins. Thus, compound 1 could be a promising, more safe and effective natural nematicidal agent for the control of root-knot nematodes.

Characteristics of Natural Prints Design in Fashion Collections - Paris, Milan & New York from 2011 SS to 2012 SS - (패션 컬렉션에 나타난 자연문양디자인의 특성 - 2011 S/S ~2012 S/S 파리, 밀란, 뉴욕 컬렉션을 중심으로 -)

  • Kwon, Hae-Sook
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.15 no.1
    • /
    • pp.91-109
    • /
    • 2013
  • The main objective of this research was to understand the latest trends of natural print design through the quantitative & qualitative analysis of fashion appeared in contemporary female collections. The research criteria was defined as 3 seasons from 2011 S/S to 2012 S/S. Data collection of 726 was done through review of 'pr$\hat{e}$t-$\grave{a}$-porter Collections' of three major fashion cities; Paris, Milan and NY. Statistical analysis of frequency with chi-square test was conducted. Also qualitative interpretation of natural print design' characteristics was completed. The main findings were as follows.; The average occurrence rate of natural print design from 2011SS to 2012 SS in three collections were 6.4% in Milan 6.4%, 5.5% in Paris and 6.8% in N.Y. The five source types of natural prints in contemporary women's fashion collections were identified and the order of their appearance were as follows: flowers, plants, animals, insects & marine organisms and compound one. The plant prints were expressed by stylized or realistic touch. Flower patterns showed more variables than plants, however, there were no big difference in their image and major characteristics. The animal prints demonstrated two aspects. First one used typical animal print of fur or skin, but the other one draw the animal figure like paintings. The compound source type presented the most interesting and fresh pattern design ideas. In the insects & marine organisms, mainly butterfly and seashell & starfish, etc. appeared as real shapes or sometimes were stylized.

  • PDF

Lsolation of Diterpene acid from Anisotome Lyallii

  • Lim Jin A;Choi Young;Oh In Kio;Kim Hyung Min;Kim Young Ok;Perry Nigel B;Baek Seung Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.1112-1115
    • /
    • 2003
  • The diterpene acid 1 was isolated from the roots of Anisotome lyallii(Apiaceae/Umbelliferae). The structure of the compound was elucidated as anisotomenoic acid 1 on the basis of spectroscopic methods. This compound was evaluated against P388 murine leukaemia and B 16/F10 melanoma cells.

Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways (Brassinosteroid의 대사공학)

  • LEE Mi-Ock;SONG Ki-Hong;LEE Hyun-Kyung;JUNG Ji-Yoon;CHOE Vit-Nary;CHOE Sunghw
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04a
    • /
    • pp.69-75
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd/dwf3 were shown to be blocked in $D^4$ reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bri1/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus It is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRI1 could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

  • PDF

Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways (Brassinosteroid의 대사공학)

  • Lee, Mi-Ock;Song, Ki-Hong;Lee, Hyun-Kyung;Jung, Ji-Yoon;Choe, Vit-Nary;Choe, Sung-Hwa
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04b
    • /
    • pp.69-75
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd/dwf3 were Shown to be blocked in $D^4$ reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bri1/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus it is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRI1 could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

  • PDF

Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways (Brassinosteroid의 대사공학)

  • Lee, Mi-Ock;Song, Ki-Hong;Lee, Hyun-Kyung;Jung, Ji-Yoon;Choe, Vit-Nary;Choe, Sung-Hwa
    • Journal of Plant Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.139-144
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd /dwf3 were shown to be blocked in D$^4$reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bril/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus it is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRIl could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

Triterpenoids and Sterones from the Stem Bark of Ailanthus altissima

  • Zhou, Xiao-Jiang;Xu, Min;Li, Xue-Song;Wang, Yue-Hu;Gao, Ye;Cai, Rui;Cheng, Yong-Xian
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.127-130
    • /
    • 2011
  • One new tirucallane-type triterpenoid, alianthusaltinin A (1), one new $C_{29}$ sterone, alianthaltone A (2), and 12 known compounds have been isolated from the stem bark of Ailanthus altissima. The structures of new compounds were identified by means of spectroscopic methods. Compound 3 was isolated from natural sources for the first time, and compounds 4, 5, and 9 were isolated from this plant for the first time.

Establishment of Foliar Application Assays for Developing Natural Herbicides (천연물 제초제 개발을 위한 전식물체 수준의 경엽처리 검정법 확립)

  • Kim, Jae-Deog;Jang, Hyun-Woo;Seo, Bo-Ram;Hwang, Hyun-Jin;Choi, Jung-Sup;Kim, Jin-Seog
    • Korean Journal of Weed Science
    • /
    • v.30 no.2
    • /
    • pp.153-163
    • /
    • 2010
  • This study was carried out to establish an improved bioassay system, whole-plant bioassay which is more effective in developing natural herbicides for foliar treatment such as herbicidal essential oils. Two bioassay systems using four weed species (Echinochloa crus-galli, Digitaria sanguinalis, Aeschynomene indica, and Abutilon theophrasti), spraying method and spotting method, were established. Spraying method is applicable if the amount of test compounds is enough, while spotting method is useful for the small amount of test compounds. The initial application rate was desirable at $2,500{\sim}5,000\;{\mu}g\;mL^{-1}$. Herbicidal activities were higher in the NOP treatment when compared to the Tween 20 treatment. To efficiently evaluate volatile compounds such as essential oils, if the compound-treated pots were incubated in dew chamber for about 10hrs, better results were obtained in the degree and stability of herbicidal responses. When the efficiency of bioassay systems established in this study was compared, the spraying method was minimized four times to the conventional method that has beed used for screening of synthetic compounds in KRICT. On the other hand, in the spotting method, screening for development of a natural herbicides was possible even in level of 1/100 test volume and 1/200 amounts of test compound compared to the spraying method.