• Title/Summary/Keyword: plant microbiome

Search Result 33, Processing Time 0.019 seconds

Microbe-Based Plant Defense with a Novel Conprimycin Producing Streptomyces Species

  • Kwak, Youn-Sig
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.54-54
    • /
    • 2015
  • Crops lack genetic resistance to most necrotrophic soil-borne pathogens and parasitic nematodes that are ubiquitous in agroecosystems worldwide. To overcome this disadvantage, plants recruit and nurture specific group of antagonistic microorganisms from the soil microbiome to defend their roots against pathogens and other pests. The best example of this microbe-based defense of roots is observed in disease-suppressive soils in which the suppressiveness is induced by continuously growing crops that are susceptible to a pathogen. Suppressive soils occur globally yet the microbial basis of most is still poorly described. Fusarium wilt, caused by Fusarium oxysporum f. sp. fragariae is a major disease of strawberry and is naturally suppressed in Korean fields that have undergone continuous strawberry monoculture. Here we show that members of the genus Streptomyces are the specific bacterial components of the microbiome responsible for the suppressiveness that controls Fusarium wilt of strawberry. Furthermore, genome sequencing revealed that Streptomyces griseus, which produces a novel thiopetide antibiotic, is the principal species involved in the suppressiveness. Finally, chemical-genetic studies demonstrated that S. griseus antagonizes F. oxysporum by interfering with fungal cell wall synthesis. An attack by F. oxysporum initiates a defensive "cry for help" by strawberry root and the mustering of microbial defenses led by Streptomyces. These results provide a model for future studies to elucidate the basis of microbially-based defense systems and soil suppressiveness from the field to the molecular level.

  • PDF

Correlation between Disease Occurrences and Microbial Community Structure by Application of Organic Materials in Pepper (유기농자재 사용에 따른 고추 병해 발생과 토양 미생물상 구조의 상관관계)

  • Cho, Gyeongjun;Kim, Seong-Hyeon;Lee, Yong-Bok;Kwak, Youn-Sig
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.202-209
    • /
    • 2020
  • Organic farming is necessary to sustainable agriculture, preserve biodiversity and continued growth the sector in agriculture. In organic farming, reduced usage of chemical agents that adversely affect human health and environment, employing amino acids and oil cake fertilizer, plant extracts, and microbial agents are used to provide safe agricultural products to consumers. To investigation microbiome structure, we proceeded on the pepper plant with difference fertilizers and treatments in organic agriculture for three years. The microbial communities were analyzed by the next generation sequencing approach. Difference soil microbiota communities were discovered base on organic fertilizer agents. Occurrences of virus and anthracnose diseases had a low incidence in conventional farming, whereas bacteria wilt disease had a low incidence in microbial agents treated plots. Microbe agents, which applied in soil, were detected in the microbial community and the funding suggested the applied microbes successfully colonized in the organic farming environment.

Comparison of Microbial Community of Rhizosphere and Endosphere in Kiwifruit

  • Kim, Min-Jung;Do, Heeil;Cho, Gyeongjun;Jeong, Rae-Dong;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.705-711
    • /
    • 2019
  • Understanding the microbial community and function are crucial knowledge for crop management. In this study, bacterial and fungal community structures both rhizosphere and endosphere in kiwifruit were analyzed to gain our knowledge in kiwifruit microbiome. Microbial community in rhizosphere was less variation than endosphere community. Functional prediction results demonstrated that abundance of saprotrophic fungi was similar in both rhizosphere and endosphere, but potential pathogenic fungi was more abundance in endosphere than in rhizosphere. This finding suggested that maintain healthy soil is the first priority to protect the host plant against biotic stresses.

Current Perspectives on the Effects of Plant Growth-promoting Rhizobacteria (식물생장촉진 근권미생물의 영향에 대한 연구 현황 및 전망)

  • Le, Thien Tu Huynh;Jun, Sang Eun;Kim, Gyung-Tae
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1281-1293
    • /
    • 2019
  • The rhizosphere is the active zone where plant roots communicate with the soil microbiome, each responding to the other's signals. The soil microbiome within the rhizosphere that is beneficial to plant growth and productivity is known as plant growth-promoting rhizobacteria (PGPR). PGPR take part in many pivotal plant processes, including plant growth, development, immunity, and productivity, by influencing acquisition and utilization of nutrient molecules, regulation of phytohormone biosynthesis, signaling, and response, and resistance to biotic- and abiotic-stresses. PGPR also produce secondary compounds and volatile organic compounds (VOCs) that elicit plant growth. Moreover, plant roots exude attractants that cause PGPR to aggregate in the rhizosphere zone for colonization, improving soil properties and protecting plants against pathogenic factors. The interactions between PGPR and plant roots in rhizosphere are essential and interdependent. Many studies have reported that PGPR function in multiple ways under the same or diverse conditions, directly and indirectly. This review focuses on the roles and strategies of PGPR in enhancing nutrient acquisition by nutrient fixation/solubilization/mineralization, inducing plant growth regulators/phytohormones, and promoting growth and development of root and shoot by affecting cell division, elongation, and differentiation. We also summarize the current knowledge of the effects of PGPR and the soil microbiota on plants.

Diversity Census of Fungi in the Ruminal Microbiome: A meta-analysis (반추위 곰팡이 다양성 조사 : 메타분석)

  • Song, Jaeyong;Jeong, Jin Young;Kim, Minseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.466-472
    • /
    • 2017
  • This study was designed to examine the diversity census of fungi in rumen microbiome via meta-analysis of fungal 28S rDNA sequences. Both terms, "rumen" and "ruminal," were searched to retrieve the sequences of rumen fungi. As of September 2016, these sequences (n=165) of ruminal origin were retrieved from the Ribosomal Database Project (RDP; http://rdp.cme.msu.edu), an archive of all 28S rDNA sequences and were assigned to the phyla Ascomycota, Neocallimastigomycota, and Basidiomycota, which accounted for 109, 48, and 8 of the 165 sequences, respectively. Ascomycota sequences were assigned to the genera Pseudonectria, Magnaporthe, Alternaria, Cochliobolus, Cladosporium, and Davidiella, including fungal plant pathogens or mycotoxigenic species. Moreover, Basidiomycota sequences were assigned to the genera Thanatephorus and Cryptococcus, including fungal plant pathogens. Furthermore, Neocallimastigomycota sequences were assigned to the genera Cyllamyces, Neocallimastix, Anaeromyces, Caecomyces, Orpinomyces, and Piromyces, which may degrade the major structural carbohydrates of the ingested plant material. This study provided a collective view of the rumen fungal diversity using a meta-analysis of 28S rDNA sequences. The present results will provide a direction for further studies on ruminal fungi and be applicable to the development of new analytic tools.

Chemical signalling within the rumen microbiome

  • Katie Lawther;Fernanda Godoy Santos;Linda B Oyama;Sharon A Huws
    • Animal Bioscience
    • /
    • v.37 no.2_spc
    • /
    • pp.337-345
    • /
    • 2024
  • Ruminants possess a specialized four-compartment forestomach, consisting of the reticulum, rumen, omasum, and abomasum. The rumen, the primary fermentative chamber, harbours a dynamic ecosystem comprising bacteria, protozoa, fungi, archaea, and bacteriophages. These microorganisms engage in diverse ecological interactions within the rumen microbiome, primarily benefiting the host animal by deriving energy from plant material breakdown. These interactions encompass symbiosis, such as mutualism and commensalism, as well as parasitism, predation, and competition. These ecological interactions are dependent on many factors, including the production of diverse molecules, such as those involved in quorum sensing (QS). QS is a density-dependent signalling mechanism involving the release of autoinducer (AIs) compounds, when cell density increases AIs bind to receptors causing the altered expression of certain genes. These AIs are classified as mainly being N-acyl-homoserine lactones (AHL; commonly used by Gram-negative bacteria) or autoinducer-2 based systems (AI-2; used by Gram-positive and Gram-negative bacteria); although other less common AI systems exist. Most of our understanding of QS at a gene-level comes from pure culture in vitro studies using bacterial pathogens, with much being unknown on a commensal bacterial and ecosystem level, especially in the context of the rumen microbiome. A small number of studies have explored QS in the rumen using 'omic' technologies, revealing a prevalence of AI-2 QS systems among rumen bacteria. Nevertheless, the implications of these signalling systems on gene regulation, rumen ecology, and ruminant characteristics are largely uncharted territory. Metatranscriptome data tracking the colonization of perennial ryegrass by rumen microbes suggest that these chemicals may influence transitions in bacterial diversity during colonization. The likelihood of undiscovered chemicals within the rumen microbial arsenal is high, with the identified chemicals representing only the tip of the iceberg. A comprehensive grasp of rumen microbial chemical signalling is crucial for addressing the challenges of food security and climate targets.

High-Throughput Screening Technique for Microbiome using MALDI-TOF Mass Spectrometry: A Review

  • Mojumdar, Abhik;Yoo, Hee-Jin;Kim, Duck-Hyun;Cho, Kun
    • Mass Spectrometry Letters
    • /
    • v.13 no.4
    • /
    • pp.106-114
    • /
    • 2022
  • A rapid and reliable approach to the identification of microorganisms is a critical requirement for large-scale culturomics analysis. MALDI-TOF MS is a suitable technique that can be a better alternative to conventional biochemical and gene sequencing methods as it is economical both in terms of cost and labor. In this review, the applications of MALDI-TOF MS for the comprehensive identification of microorganisms and bacterial strain typing for culturomics-based approaches for various environmental studies including bioremediation, plant sciences, agriculture and food microbiology have been widely explored. However, the restriction of this technique is attributed to insufficient coverage of the mass spectral database. To improve the applications of this technique for the identification of novel isolates, the spectral database should be updated with the peptide mass fingerprint (PMF) of type strains with not only microbes with clinical relevance but also from various environmental sources. Further, the development of enhanced sample processing methods and new algorithms for automation and de-replication of isolates will increase its application in microbial ecology studies.

Bacterial Community and Diversity from the Watermelon Cultivated Soils through Next Generation Sequencing Approach

  • Adhikari, Mahesh;Kim, Sang Woo;Kim, Hyun Seung;Kim, Ki Young;Park, Hyo Bin;Kim, Ki Jung;Lee, Youn Su
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.521-532
    • /
    • 2021
  • Knowledge and better understanding of functions of the microbial community are pivotal for crop management. This study was conducted to study bacterial structures including Acidovorax species community structures and diversity from the watermelon cultivated soils in different regions of South Korea. In this study, soil samples were collected from watermelon cultivation areas from various places of South Korea and microbiome analysis was performed to analyze bacterial communities including Acidovorax species community. Next generation sequencing (NGS) was performed by extracting genomic DNA from 92 soil samples from 8 different provinces using a fast genomic DNA extraction kit. NGS data analysis results revealed that, total, 39,367 operational taxonomic unit (OTU), were obtained. NGS data results revealed that, most dominant phylum in all the soil samples was Proteobacteria (37.3%). In addition, most abundant genus was Acidobacterium (1.8%) in all the samples. In order to analyze species diversity among the collected soil samples, OTUs, community diversity, and Shannon index were measured. Shannon (9.297) and inverse Simpson (0.996) were found to have the highest diversity scores in the greenhouse soil sample of Gyeonggi-do province (GG4). Results from NGS sequencing suggest that, most of the soil samples consists of similar trend of bacterial community and diversity. Environmental factors play a key role in shaping the bacterial community and diversity. In order to address this statement, further correlation analysis between soil physical and chemical parameters with dominant bacterial community will be carried out to observe their interactions.

Comparison of Bacterial Community of Healthy and Erwinia amylovora Infected Apples

  • Kim, Su-Hyeon;Cho, Gyoengjun;Lee, Su In;Kim, Da-Ran;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.37 no.4
    • /
    • pp.396-403
    • /
    • 2021
  • Fire blight disease, caused by Erwinia amylovora, could damage rosaceous plants such as apples, pears, and raspberries. In this study, we designed to understand how E. amylovora affected other bacterial communities on apple rhizosphere; twig and fruit endosphere; and leaf, and fruit episphere. Limited studies on the understanding of the microbial community of apples and changes the community structure by occurrence of the fire blight disease were conducted. As result of these experiments, the infected trees had low species richness and operational taxonomic unit diversity when compared to healthy trees. Rhizospheric bacterial communities were stable regardless of infection. But the communities in endosphere and episphere were significanlty affected by E. amylovora infection. We also found that several metabolic pathways differ significantly between infected and healthy trees. In particular, we observed differences in sugar metabolites. The finding provides that sucrose metabolites are important for colonization of E. amylovora in host tissue. Our results provide fundamental information on the microbial community structures between E. amylovora infected and uninfected trees, which will contribute to developing novel control strategies for the fire blight disease.

Complete Genome Sequence of Paraburkholderia phenoliruptrix T36S-14, a Plant Growth Promoting Bacterium on Tomato (Solanum lycopersicum L.) Seedlings (토마토생장촉진효과가있는 Paraburkholderia phenoliruptrix T36S-14 균주의유전체염기서열)

  • Jiwon Kim;Yong Ju Jin;Min Ju Lee;Dong Suk Park;Jaekyeong Song
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.2
    • /
    • pp.195-199
    • /
    • 2024
  • Paraburkholderia phenoliruptrix T36S-14, identified as a potential plant growth-promoting bacterium, was isolated from the core microbiome of tomato rhizosphere soil. When assessed for its growth promotion, Strain T36S-14 demonstrated a notable 20% increase in the fresh weight of tomato seedlings. The strain possesses two circular chromosomes, one of 4,104,520 base pair (bp) (CP119873) and the other of 3,258,072 bp (CP119874), both exhibiting G+C contents of 63.5% and 62.7%, respectively. The chromosome comprises 6,319 protein-coding sequences, 65 transfer RNA genes, and 18 ribosomal RNA genes (5S: 6, 16S: 6, and 23S: 6). Additionally, P. phenoliruptrix T36S-14 produces siderophores that promote plant growth.