• Title/Summary/Keyword: plant growth-promoting agent

Search Result 60, Processing Time 0.034 seconds

The Promotive Effect of NAA, IBA and Ethychlozate on Rooting Cuttings of Certain Ornamental Plants and Some Physiological Studies. (관상식물 삽목발근에 있어서 NAA, IBA 및 Ethychlozate의 발근촉진효과와 그 생리학적연구)

  • Jeong, Hae-Jun;Gwak, Byeong-Hwa
    • The Journal of Natural Sciences
    • /
    • v.1
    • /
    • pp.115-198
    • /
    • 1987
  • The present studies were undertaken to elucidate the influence of auxins, auxin-like substance-ethychlozate ("Figaron"),and pH and sort of rooting media on rooted propagation of certainornamental woody plant cuttings, and to see possible changes in internal compositions characterizing after root-promoting treatment as the cutting stage proceeded. The experimental check-up srevealed and summarized as seen in the following;I. Effect of three different auxin treatments on rooting cuttings: 1) Promotive influence of auxin varied according to different concentration levels, hours of dipping treatment of the auxins, and kind of plants. The greatest effect was obtained for Forsythia ksreana with NAA and IBA, for Ligustrurn obtusifolium var. variegatum with NAA and ethychlozate, for Hydrangea macrophylla, Magnolia kobus, and Magnolia liliflora with NAA, lBA and ethychlozate also. The most effective level of the promotive agents was found 200mg/l for NAA, 1000mg/l for IBA, and 200mg/l for ethychlozate. For Weigela florida and Gardenia jasminoides, range of the most effective level was shown relatively wide spread. 2) NAA was more effective at its optimal level of the rooting agent than ethychiozate for Weigela florida, Viburnum awabuki, Forsythia koreana, Acer palmatum 'Nomura', Bouga invillea glabra, Elaeagnus umbellata, Prunus tomentosa, Ligustrum obtusifolium, Pyracantha coccinea, Cestrum noctu rnum, Hydrangea macrophylla, Codiaeum variegatum, Rhododen dron lateritium, and Ilex crenata var. macrophylla, and yet ethychlozate was found either as equally as effective or more so than NAA for Zebrina pendula, Hibiscus syriacus, Fatshedera lizei, Schefflera arboricola, Campsis grandiflo ra, Ixora chinensis, Euonymus japonica, and Magnolia liliflora. On the contrary, no the auxin effect was noted with Lagerstroemia indica, Trachelospermum asiaticum, and Syringa vulgaris. This probably indicates that these species are genetically different for the auxin response.II. Effect of different pH and sorts of cutting media on rooting cuttings: 1) Bougainvillea showed best in rooting for the number and dry weight at pH 6.5, more with ethychlozate than NAA, while Ligustrum did at pH 5.0 more with NAA than ethychlozate. pH 4.0 medium resulted in the best rooting for Rhododendron with NAA, more than ethychlozate. 2) Use of cutting medium with peat: perlite: vermiculite = 1:1:1 showed to give the greatest rooting percent and dry weight, apart from considering the number of roots. This apparently meant the fact that cutting medium has more to do with root growth than root differentiation. Rhododendron yet showed results with cutting media that use of peat: perlite = 2:1 mixed is more effective on rooting than using peat alone.III. Effect of auxinic treatments on rooting cuttings and change in some cutting compositions: 1) Under the climatic conditions of July having temperature $26.3\pm$$2.4^{\circ}C$for cutting bed, new roots of Magnolia started to show up generally 20 days after the cutting was made, whereas Cestrum did much earlier than that, namely 14 days after. 2) Although total carbohydrate content of Magnolia cuttings showed no marked change without auxin treatment, it did so with the treatment, especially 30 days after the start of cutting. Cestrum cuttings demonstrated a gradual in crease in total carbohydrate content as rooting took place, and the content became reduced more with auxin than with out, just about when rooting proceeded to 14 days after the start of cutting. 3) Magnolia generally showed an increase in total nitrogen content as rooting proceeded more, and Cestrum showed a decrease in total nitrogen of cuttings. The auxin treatment exhibited no pertinent relation with change in plant nitro gen when rooting is promoted with auxin treatment. 4) An abrupt drop of total sugar and reducing sugar was noticed as Magnolia rooting started, and this reduction was parti cularly outstanding with auxin treatment. Starch content also was decreased in the later stage of cutting with auxin treatment, and was rather increased without auxin. Although sugar content soon increased as cutting started with auxin treatment in the case of Cestrum, it became reduced after rooting took place. 5) Total phenol content increased with rooting, and this was especially true when rooting started. This increase was reversed somehow regardless of auxin treatment. A decrease in phenol of Magnolia was found more striking with auxin than without in the later stage of the cutting period. 6)Avena coleoptile test for auxin-like substances presented the physiologically active factor is more in easy-to-root Magnolia liliflora than hard-to-root Magnolia kobus, and the activity of auxin-like substances was much increased with auxin treatment. The increase in the growth promoting substances was markedly pronounced when rooting just started. The active growth substances decreased in the later stage of cutting, and certain inhibitory substances started appearing. Cestrum also showed physiologically similar growth promoting substances accompanying auxin-like active substances if auxin is treated, and some strong inhibitory substances seemed to appear in the later stage of cutting. 7) Mung-bean-rooting test indicated biologically that endogenous growth substances in Magnolia all promoted mung-bean rooting, and activity of the growth substances apparently stimulated mung-bean rooting with auxin more than without. Here auxin treatment seemed to give a rise to an increased activity of endogenous growth substances in cuttings. This activity was found much greater with either NAA or IBA than ethychlozate, and showed its peak of the activity when rooting first started taking place. Certain inhibitory substances for Avena coleoptile growth strongly promoted mung-bean rooting, and it was also much like in the case of Cestrum.

  • PDF

Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34

  • Lee, Byung Dae;Dutta, Swarnalee;Ryu, Hojin;Yoo, Sung-Je;Suh, Dong-Sang;Park, Kyungseok
    • Journal of Ginseng Research
    • /
    • v.39 no.3
    • /
    • pp.213-220
    • /
    • 2015
  • Background: Korean ginseng (Panax ginseng Meyer) is a perennial herb prone to various root diseases, with Phytophthora cactorum being considered one of the most dreaded pathogens. P. cactorum causes foliar blight and root rot. Although chemical pesticides are available for disease control, attention has been shifted to viable, eco-friendly, and cost-effective biological means such as plant growth-promoting rhizobacteria (PGPR) for control of diseases. Methods: Native Bacillus amyloliquefaciens strain HK34 was isolated from wild ginseng and assessed as a biological control agent for ginseng. Leaves from plants treated with HK34 were analyzed for induced systemic resistance (ISR) against P. cactorum in square plate assay. Treated plants were verified for differential expression of defense-related marker genes using quantitative reverse transcription polymerase chain reaction. Results: A total of 78 native rhizosphere bacilli from wild P. ginseng were isolated. One of the root-associated bacteria identified as B. amyloliquefaciens strain HK34 effectively induced resistance against P. cactorum when applied as soil drench once (99.1% disease control) and as a priming treatment two times in the early stages (83.9% disease control). A similar result was observed in the leaf samples of plants under field conditions, where the percentage of disease control was 85.6%. Significant upregulation of the genes PgPR10, PgPR5, and PgCAT in the leaves of plants treated with HK34 was observed against P. cactorum compared with untreated controls and only pathogen-treated plants. Conclusion: The results of this study indicate HK34 as a potential biocontrol agent eliciting ISR in ginseng against P. cactorum.

Biocontrol of Red Pepper Using Mixed Culture of Antagonistic Bacterium and Phosphate Solubilizing Yeast (항진균 세균과 난용성 인산염 가용화 효모의 혼합 배양액을 이용한 고추 병해의 생물학적 방제)

  • Lee, Gun Woong;Min, Byung-Dae;Park, Sujeong;Jheong, Weonhwa;Go, Eun Byeul;Lee, Kui-Jae;Chae, Jong-Chan
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.398-402
    • /
    • 2013
  • This study was to investigate beneficial effects of microbial mixture on red pepper which was capable of promoting plant growth by solubilizing insoluble phosphate as well as protecting plants from pathogenic attack. Saccharomyces sp. L13 was isolated for phosphate solubilizing activity on aluminium phosphate, tricalcium phosphate, calcium hydrophosphate, and magnesium hydrophosphate. On the other hand, Bacillus sp. L32 was isolated for antagonistic activity against Phytophthora capsisi and Colletotrichum gloeosporioides, causing Phytophthora blight and Anthracnose disease in pepper, respectively. The strain L32 exhibited antagonistic activities both under dual culture assays and detached leaves assays. The each strain under the condition of mixed cultivation exhibited the same growth rates as one under pure cultivation. In greenhouse study, the mixed culture showed the both effect of plant growth promotion and reduction of disease symptom development against P. capsisi and C. gloeosporioides providing a potential as effective microbial agent for plant husbandry.

Degradation effect of carbendazim in soil by application with the microbial agent, Rhodococcus sp. 3-2 (미생물제(Rhodococcus sp. 3-2) 처리에 따른 토양 중 카벤다짐의 분해효과)

  • Yeon, Jehyeong;Kim, Hyeon-su;Ahn, Jae-Hyung;Han, Gui Hwan;Oh, Young Goun;Cho, Il Kyu;Park, In-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.322-329
    • /
    • 2021
  • BACKGROUND: The fungicide of benomyl, a benzimidazole group, has been commonly used for pesticides against fungal diseases in the world. However, benomyl is rapidly hydrolyzed in the environment after using to control plant diseases and has adverse effects by generating carbendazim, which is toxic to plants, humans, and the environment. METHODS AND RESULTS: In this study, the decomposition effect of carbendazim, a degradation product of benomyl was conducted in pot and field after making a prototype of benomyl-degrading microbial agent (BDMA). We found that the carbendazim-degrading microbial agent (CDMA) (105, 106, and 107 cfu/g soil) decomposed carbendazim by 50% or more in all the treatments, compared to the untreated control in the pot tests after four weeks. The effect of 100% decomposition of carbendazim was observed at 7 days after treatment, when the prototype of BDMA was apllied at 10-folds dilution in the field. The decomposition effect at more than 60% and plant growth promoting effect were observed after 7 days of the treatment, compared with the untreated group in the second field experiment,treated with commercially available concentrations of 500-folds and 1,000-folds. CONCLUSION(S): These results might represent that the BDMA would decompose carbendazim effectively, a decomposition product of the fungicide benomyl, remaining in agricultural area, and it could be utilized practically by using a low dilution rate.

An Antifungal Antibiotic Purified from Bacillus megaterium KL39, a Biocontrol Agent of Red-Pepper Phytophthora-Blight Disease

  • JUNG HEE KYOUNG;KIM SANG-DAL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1001-1010
    • /
    • 2005
  • Bacillus megaterium KL39, an antibiotic-producing plant growth promoting rhizobacterium (PGPR), was selected from soil. The antifungal antibiotic, denoted KL39, was purified from culture filtrate by column chromatography using Dion HP-20, Silica gel, Sephadex LH-20, and prep-HPLC. Thin layer chromatography, employing the solvent system of ethanol:ammonia:water=8:1:1, showed the $R_{f}$. value of 0.32. The antibiotic KL39 showed a negative reaction with ninhydrin solution, positive with iodine vapor, and also positive with Ehrlich reagent. It was soluble in methanol, ethanol, butanol, and acetonitrile, but insoluble in chloroform, toluene, hexane, ethyl ether, or acetone. Its UV spectrum had the maximum absorption at 208 nm. Amino acid composition, FAB-mass, $^{1}H-NMR,\;^{13}C-NMR$, and atomic analyses showed that the antibiotic KL39 (MW=1,071) has a structure very similar to iturin E. The antibiotic KL39 has a broad antifungal spectrum against a variety of plant pathogenic fungi including Rhizoctonia solani, Pyricularia oryzae, Monilinia froeticola, Botrytis cinenea, Altenaria kikuchiana, Fusarium oxysporum, and F. solani. An MIC value of $10\;{\mu}g/ml$ was determined for Phytophthora capsici. Macromolecular incorporation studies with P. capsici using radioactive [$^{3}H-adenine$] as the precursor, indicated that the antibiotic KL39 strongly inhibits the DNA biosynthesis of the fungal cell. Microscopic observation of the antifungal action showed abnormal hyphal swelling of P. capsici. The purified antibiotic KL39 was very effective for the biocontrol of in vivo Phytophthora-blight disease of pepper.

The Optimal Culture Conditions and Antifungal Activity of Culture Extract from Oudemansiella mucida (끈적긴뿌리버섯(Oudemansiella mucida)의 최적배양조건 및 배양 추출액의 항균작용에 관한 연구)

  • Choi, Mi-Ryue;Cho, Hae-Jin;Lee, Jae-Seong;Kim, Hye-Young;Lee, Tae-Soo
    • The Korean Journal of Mycology
    • /
    • v.39 no.2
    • /
    • pp.91-98
    • /
    • 2011
  • Oudemansiella mucida, an edible and medicinal mushrooms belonging to Tricholomataceae of Basidiomycota, has been known to produce antifungal substances to inhibit the mycelial growth and spore germination of the plant pathogenic fungi. To produce good amount of antifungal substances from culture media, the optimal culture conditions of O. mucida were investigated. The most favorable conditions for the mycelial growth were $25^{\circ}C$ and pH 5 in potato dextrose agar. The most favorable carbon and nitrogen sources promoting mycelial growth were maltose and calcium nitrate, respectively. The optimum C/N ratio was about 20 : 1 in case that 3% glucose was supplemented to the basal medium as a carbon source. The optimal mycelial growth of O. mucida was found in the Hennerberg medium. The crude extract from submerged culture of potato dextrose broth exhibited inhibition of mycelial growth of Colletotrichum acutatum, Botrytis cinerea and Pyricularia oryzae but, fungicidal activity is not good enough to compared with commercially available fungicides tested. Therefore, the antifungal substances extracted from submerged culture of O. mucida might have a potential to be used for biocontrol agent of fungal diseases of plants.

Structural Identification of $Siderophore_{AH18}$ from Bacillus subtilis AH18, a Biocontrol agent of Phytophthora Blight Disease in Red-pepper (Bacillus subtilis AH18의 고추역병 방제능과 $Siderophore_{AH18}$의 구조분석)

  • Woo, Sang-Min;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.326-335
    • /
    • 2008
  • The siderophore ($siderophore_{AH18}$) of Bacillus subtilis AR18 was determined to be one of catechol type and purified by using Amberlite XAD-2, Sephadex LR-20 chromatography, and reversed-phase RPLC. The $Siderophore_{AH18}$ was identified bacillibactin with its structure by GC-MS, $^1H$-NMR, and $^{13}C$-NMR. $Siderophore_{AH18}$ (bacillibactin) had been confirmed its molecular weight of 883 and chemical structure of $(2,3-dihydroxybenzoate-glycine-threonine)_3$. Purified $siderophore_{AH18}$ showed strong biocontrol ability towards the spore of Phytophthora capsici on PDA and able to effectively suppress (55%) P. capsici causing red-pepper blight in the pot in vivo test.

Selection and Identification of Phytohormones and Antifungal Substances Simultaneously Producing Plant Growth Promoting Rhizobacteria from Microbial Agent Treated Red-pepper Fields (미생물제제시용 고추경작지로부터 식물생장홀몬과 항진균물질을 동시에 생산하는 식물생장촉진근권세균의 선발 및 동정)

  • Jung, Byung-Kwon;Lim, Jong-Hui;An, Chang-Hwan;Kim, Yo-Hwan;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.190-196
    • /
    • 2012
  • In this study, a total of more than 1,000 bacteria, including 739 species of aerobic bacteria, 80 species of urease producing bacteria and 303 species of photosynthetic bacteria, were isolated from red-pepper field soils located in the Gyeongsan Province of the Republic of Korea. Amongst these, 158 species of aerobic bacteria, 70 species of urease producing bacteria and 228 species of photosynthetic bacteria were found to be auxin producing soil bacteria through quantification analysis with the Salkowski test. The latter groupings were then tested for antifungal activities to ${\beta}$-Glucanase and siderophore using CMC congo red agar and CAS blue agar media. In addition, the selected strains were examined for antifungal activity against various phytopathogenic fungi on PDN agar media. Six strains; BCB14, BCB17, C10, HA46, HA143, and HJ5, were noted for their ability to both produce auxin and act as antifungal substances. 16S rDNA sequence comparison analyses of these six strains identified them as Bacillus subtilis BCB14, B. methylotrophicus BCB17, B. methylotrophicus C10, B. sonorensis HA46, B. subtilis HA143, and B. safensis HJ5.

Purification and Characteriztion of an Antifungal Antibiotic from Bacillus megaterium KL 39, a Biocontrol Agent of Red-Papper Phytophtora Blight Disease. (고추역병균 Phytophthora capsici를 방제하는 길항균주 Bacillus megaterium KL39의 선발과 길항물질)

  • 정희경;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.235-241
    • /
    • 2003
  • For the biological control of Phytophthora blight of red-pepper caused by Phytophthora capsici, an antibiotic-producing plant growth promoting rhizobacteria (PGPR) Bacillus sp. KL 39 was selected from a local soil of Kyongbuk, Korea. The strain KL 39 was identified as Bacillus megaterium by various cultural, biochemical test and API and Microlog system. B. megaterium KL 39 could produce the highest antifungal antibiotic after 40 h of incubation under the optimal medium which was 0.4% fructose, 0.3% yeast extract, and 5 mM KCl at 30 C with initial pH 8.0. The antifungal antibiotic KL 39 was purified by Diaion HP-20 column, silica gel column, Sephadex LH-20 column, and HPLC. Its RF value was confirmed 0.32 by thin-layer chromatography with Ethanol:Ammonia:Water = 8:1:1. The crude antibiotic KL39 was active against a broad range of plant pathogenic fungi, Rhizoctonia solani, Pyricularia oryzae, Monilinia fructicola, Botrytis cinenea, Alteranria kikuchiana, Fusarium oxysporum and Fusarium solani. The purified antifungal antibiotic KL39 had a powerful biocontrol activity against red-pepper phytophthora blight disease with in vivo pot test as well as the strain B. megaterium KL 39.

Genetic Monitoring of Plant Growth Promoting Rhizobacterium (PGPR), Bacillus subtilis AH18 using Multiplex PCR in Field Soil (Multiplex PCR을 이용한 생물방제균 Bacillus subtilis AH18의 토양내 Genetic Monitoring)

  • Woo, Sang-Min;Lim, Jong-Hui;Jeong, Hee-Young;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • The genetic monitoring method was developed for the rapid detection of the PGPR and biocontrol agent, B. subtilis AH18 in red-pepper field soil by multiplex PCR using sid, aec and cel gene primers. The monitoring of B. subtilis AH18 in the soil was carried by amplified a 2,3-dihydro-2,3-dihydroxy benzoate dehydrogenase [EC: 1. 3. 1. 28]gene (sid - 794 bp : EF408238) which is a key enzyme of siderophore synthesis, an auxin efflux carrier gene (aec - 1,052 bp : EF408239) and a cellulase gene (cel - 1,582 bp : EF070194). The natural un sterilized soil was inoculated with B. subtilis AH18 to determine the sensitivity ($1.8\times10^5$ cfu/g) of multiplex PCR for the rapid dectection and then the strain was monitored successfully in rhizosphere or non-rhizosphere soil of red-pepper cultural soil. At 3 weeks after the treatment, density of the strain was monitored more abundantly in rhizosphere soil.