• Title/Summary/Keyword: plant growth promoting effect

Search Result 157, Processing Time 0.031 seconds

Effect of Plant-Growth-Promoting-Bacterial Inoculation on the Growth and Yield of Red Pepper(Capsicum annuum L.) with Different Soil Electrical Conductivity Level (염류수준별 고추 생육과 수량에 미치는 식물생육보진미생물(植物生育保進微生物) 접종효과)

  • Lee, Young-Han;Yang, Min-Suk;Yun, Han-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.396-402
    • /
    • 1996
  • This study was conducted to determine the effect of treatment with the plant-growth-promoting bacteria on the growth and yield of red pepper(Capsicum annuum L.) with different soil electrical conductivity(EC) levels. The mixed liquid culture was done pseudomonas P and saboraud dextrose medium. The isolated bacteria(IB) were inoculated by spray of 3.7ml at 1/2000a pot filled with different soil electrical conductivity level(2.9, 8.6, 11.5dS/m) every week, respectively, with mixed liquid culture (Pseudomonas P+Sabouraud dextrose) of eight strains. The plant height of red pepper with IBs treatment in different soil EC levels showed better growth than IBs nontreatment in the order of the 2.9>8.6>11.5 dS/m. The yield of pepper with IBs treatment in different soil EC level was higher in 13% than IBs nontreatment and chemical properties($P_2O_5$, K, Ca, Mg) of the soil after harvest in IBs treatment were slightly increased, while organic matter and EC of IBs treatment were slightly decreased than those of IBs nontreatment. Moisture content of the soil after the harvesting with IBs treatment was slightly increased than IBs nontreatment.

  • PDF

Priming of Defense-Related Genes Confers Root-Colonizing Bacilli-Elicited Induced Systemic Resistance in Pepper

  • Yang, Jung-Wook;Yu, Seung-Hun;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.389-399
    • /
    • 2009
  • A group of beneficial plant bacteria has been shown to increase crop growth referring to as plant growth-promoting rhizobacteria (PGPR). PGPR can decrease plant disease directly, through the production of antagonistic compounds, and indirectly, through the elicitation of a plant defense response termed induced systemic resistance (ISR). While the mechanism of PGPR-elicited ISR has been studied extensively in the model plant Arabidopsis, it is less well characterized in crop plants such as pepper. In an effort to better understand the mechanism of ISR in crop plants, we investigated the induction of ISR by Bacillus cereus strain BS107 against Xanthomonas axonopodis pv. vesicatoria in pepper leaves. We focused on the priming effect of B. cereus strain BS107 on plant defense genes as an ISR mechanism. Of ten known pepper defense genes that were previously reported to be involved in pathogen defense signaling, the expression of Capsicum annum pathogenesis-protein 4 and CaPR1 was systemically primed by the application of strain BS107 onto pepper roots confirming by quantitative-reverse transcriptase PCR. Our results provide novel genetic evidence of the priming effect of a rhizobacterium on the expression of pepper defense genes involved in ISR.

Studies on the effects of medicinal plant extracts on the hair growth stimulation (數種의 韓藥材가 毛髮成長에 미치는 影響)

  • Choi, Woong;Choi, Jung-Hwa;Kim, Jong-Han
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.15 no.2
    • /
    • pp.80-103
    • /
    • 2002
  • To screen the effective materials for hair loss treatment, several natural extracts were tested using in vivo and in vitro test models. Firstly, all test materials were applicated onto the back skin of C57BL/6 mouse and then hair growth pormoting effect were measured using hair growth index As a result, Polygonum muitifiorum Thunb and Terrninalia chebula Retz. showed potent hair growth promoting effect, ranking as 1.5-2.0 of hair growth index. However, there were no plant extracts, which have remarkable potential of growth promotion of human hair dermal papilla cells cultured in vitro. In the experiments of 5${\alpha}$-reductase type Ⅱ inhibition assay, Morus alba L., Chaenomelis Fructus, Saussureae Radix, Angelicae Gigantis Radix, Polygonum multifiorum Thunb, and Angelica dahurica (Fischer) Bentham et Hooker f. showed effective potential to inhibit the activity of 5${\alpha}$-reductase type Ⅱ. To investigate the possible involvement of effects of several plant extracts on the gene expression of growth factors in human hair dermal papilla cells, RT-PCR analyses were performed. As a consequences, Mentha haplocalyx Briq., Cimicifuga foetida L., Eclipta prostrata (L.) L., Pinus densiflora S. et. Z, and Polygonum muitifiorum Thunb revealed the regulatory roles on the expression of growth factors such as IGF-I, KGF, HGF and VEGF in the dermal papilla cells. Another test for inhibition of microbial such as P. acne and P. ovale were also carried out to find whether these plant extracts have anti-microbial activities. Morus alba L. and Chaenomelis Fructus showed anti-microbial effects on Propionibacterium acnes, which is believed as a pathogen of acne. Together, these results showed several plant extracts can be used for hair growth promotion.

  • PDF

The Plant Growth-Promoting Fungus Aspergillus ustus Promotes Growth and Induces Resistance Against Different Lifestyle Pathogens in Arabidopsis thaliana

  • Salas-Marina, Miguel Angel;Silva-Flores, Miguel Angel;Cervantes-Badillo, Mayte Guadalupe;Rosales-Saavedra, Maria Teresa;Islas-Osuna, Maria Auxiliadora;Casas-Flores, Sergio
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.7
    • /
    • pp.686-696
    • /
    • 2011
  • To deal with pathogens, plants have evolved sophisticated mechanisms including constitutive and induced defense mechanisms. Phytohormones play important roles in plant growth and development, as well as in the systemic response induced by beneficial and pathogen microorganisms. In this work, we identified an Aspergillus ustus isolate that promotes growth and induces developmental changes in Solanum tuberosum and Arabidopsis thaliana. A. ustus inoculation on A. thaliana and S. tuberosum roots induced an increase in shoot and root growth, and lateral root and root hair numbers. Assays performed on Arabidopsis lines to measure reporter gene expression of auxin-induced/ repressed or cell cycle controlled genes (DR5 and CycB1, respectively) showed enhanced GUS activity, when compared with mock-inoculated seedlings. To determine the contribution of phytohormone signaling pathways in the effect elicited by A. ustus, we evaluated the response of a collection of hormone mutants of Arabidopsis defective in auxin, ethylene, cytokinin, or abscisic acid signaling to the inoculation with this fungus. All mutant lines inoculated with A. ustus showed increased biomass production, suggesting that these genes are not required to respond to this fungus. Moreover, we demonstrated that A. ustus synthesizes auxins and gibberellins in liquid cultures. In addition, A. ustus induced systemic resistance against the necrotrophic fungus Botrytis cinerea and the hemibiotrophic bacterium Pseudomonas syringae DC3000, probably through the induction of the expression of salicylic acid, jasmonic acid/ethylene, and camalexin defense-related genes in Arabidopsis.

Effect of Transgenic Rhizobacteria Overexpressing Citrobacter braakii appA on Phytate-P Availability to Mung Bean Plants

  • Patel, Kuldeep J.;Vig, Saurabh;Nareshkumar, G.;Archana, G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1491-1499
    • /
    • 2010
  • Rhizosphere microorganisms possessing phytase activity are considered important for rendering phytate-phosphorus (P) available to plants. In the present study, the Citrobacter braakii phytase gene (appA) was overexpressed in rhizobacteria possessing plant growth promoting (PGP) traits, for increasing their potential as bioinoculants. AppA was cloned under the lac promoter in the broadhost-range expression vector pBBR1MCS-2. Transformation of the recombinant construct pCBappA resulted in high constitutive phytase activity in all of the eight rhizobacterial strains belonging to genera Pantoea, Citrobacter, Enterobacter, Pseudomonas (two strains), Rhizobium (two strains), and Ensifer that were studied. Transgenic rhizobacterial strains were found to display varying levels of phytase activity, ranging from 10-folds to 538-folds higher than the corresponding control strains. The transgenic derivative of Pseudomonas fluorescens CHA0, a well-characterized plant growth promoting rhizobacterium, showed the highest expression of phytase (~8 U/mg) activity in crude extracts. Although all transformants showed high phytase activity, rhizobacteria having the ability to secrete organic acid showed significantly higher release of P from Ca-phytate in buffered minimal media. AppA overexpressing rhizobacteria showed increased P content, and dry weight (shoot) or shoot/ root ratio of mung bean (Vigna radiata) plants, to different extents, when grown in semisolid agar (SSA) medium containing Na-phytate or Ca-phytate as the P sources. This is the first report of the overexpression of phytase in rhizobacterial strains and its exploitation for plant growth enhancement.

Isolation and Characterization of Plant Growth Promoting Rhizobacteria from Waste Mushroom bed from Agaricus bisporus (양송이 수확 후 배지로부터 식물생장촉진세균의 분리 및 생육특성)

  • Jung, Young-Pil;Kyung, Ki-Cheon;Jang, Kab-Yeul;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.866-871
    • /
    • 2011
  • An auxin-producing bacteria (3YN11-02) was isolated from waste mushroom bed from Agaricus bisporus of Chungnam Buyeo-Gun area. The strain 3YN11-02 was identified as a novel species belongs to Rahnella aquatica by a chemotaxanomic and phylogenetic nalysis. The isolate was confirmed to produce indole-3-acetic acid (IAA) which is one of auxin hormone by TLC and HPLC analysis. When the concentration of IAA was assessed by performing HPLC quantity analysis, the maximal $290mg\;L^{-1}$ of IAA detected in ether fraction extracted from the culture filtrate which was cultured in R2A broth containing 0.1% tryptophan for 24 h at $35^{\circ}C$. The molecular weight of the main peak obtained by LC-mass analysis was correspondent well to 175, that of IAA. To investigate the growth promoting effect of crop, when the culture broth of R. aquatica 3YN11-02 was infected onto water culture and seed pot of mung bean, the adventitious root induction and root growth of mung bean were 2.0 times higher than control.

The Experimental Studies of YangHyulEum Gami-Bang Extracts on the Hair Growth Effect (양혈음가미방(養血飮加味方) 추출물의 발모효과에 대한 실험적 연구)

  • Hong, Jee-Hee;Jung, Hyun-A
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.29 no.3
    • /
    • pp.74-94
    • /
    • 2016
  • Objectives : YangHyulEum Gami-Bang(YHEG) is a hair care extracts which is composed of fourteen plant extracts used in oriental medicine. The purpose of this study is to investigate the effect of YangHyulEum Gami-Bang(YHEG) on the alopecia and hair growth.Methods & Results : The herbal extracts from YangHyulEum Gami-Bang(YHEG) was tested using in vivo and in vitro test models. 1. The YHEG extracts showed effect on the DNA proliferation of the hair dermal papilla cells measured by [3H]thymidine incorporation. 2. YHEG showed promoting on the expression of growth factors such as IGF-1, KGF-1 and inhibiting on the expression of inhibitory hair growth factor such as TGF-β1, BMP-2 estimated by qPCR. 3. The YHEG extracts showed effect on the activation of β-catenin in the dermal papilla cells. 4. YHEG showed inhibitory effects of NO synthesis at 0.2% concentrations. 5. YHEG showed effects in the expression of IL-1β, TNF-α, IL-6, COX-2 and iNOS gene in the LPS stimulated RAW 264.7 cells. 6. The hair growth index of the YHEG extracts ranked at over 2 when compared to control group which was ranked at 0. 7. The hair follicle number, length and size of the experimental group were remarkably higher than the control group in the histological observation.Conclusions : These results suggest that YangHyulEum Gami-Bang(YHEG) has hair growth promoting activity and it can be used as a potent treatment agent for preventing hair loss and stimulating hair growth for treatment of alopecia.

Comparison of Plant Growth Promoting Methylobacterium spp. and Exogenous Indole-3-Acetic Acid Application on Red Pepper and Tomato Seedling Development (식물생장촉진 세균 Methylobacterium spp. 와 IAA 처리가 고추와 토마토 유묘의 생육에 미치는 영향)

  • Boruah, Hari P. Deka;Chauhan, Puneet S.;Yim, Woo-Jong;Han, Gwang-Hyun;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.96-104
    • /
    • 2010
  • A comparative study was performed in gnotobiotic and greenhouse conditions to evaluate the effect of exogenous application of indole-3-acetic acid (IAA) and inoculation of Methylobacterium spp. possessing 1-aminocyclopropane-1-carboxylate deaminase (ACCD) and IAA activity on red pepperand tomato seedling growth and development. Application of 1.0 ${\mu}g\;mL^{-1}$ IAA positively influenced root growth while high concentrations (>10.0 ${\mu}g\;mL^{-1}$) suppressed root growth of red pepper and tomato under gnotobiotic condition. On the other hand, inoculation of Methylobacterium strains with ACCD activity and IAA or without IAA enhanced root growth in both plants. Similarly, under greenhouse condition the inoculation of Methylobacterium sp. with ACCD activity and IAA enhanced plant fitness recorded as average nodal length and specific leaf weight (SLW) but the effect is comparable with the application of low concentrations of IAA. Seedling length was significantly increased by Methylobacterium strains while total biomass was enhanced by Methylobacterium spp. and exogenous applications of < 10.0 ${\mu}g\;mL^{-1}$ IAA. High concentrations of IAA retard biomass accumulation in red pepper and tomato. These results confirm that bacterial strains with plant growth promoting characters such as IAA and ACCD have characteristic effects on different aspects of growth of red pepper and tomato seedlings which is comparable or better than exogenous applications of synthetic IAA.

Effect of Ribitol and Plant Hormones on Aposymbiotical Growth of the Lichenforming Fungi of Ramalina farinacea and Ramalina fastigiata

  • Wang, Yi;Han, Keon-Seon;Wang, Xin Yu;Koh, Young-Jin;Hur, Jae-Seoun
    • Mycobiology
    • /
    • v.37 no.1
    • /
    • pp.28-30
    • /
    • 2009
  • This study was aimed at evaluating the growth promoting effect of symbiotic algal polyol (ribitol) and plant hormones on the lichen-forming fungi (LFF), Ramalina farinacea (CH050010 and 40403) and Ramalina fastigiata. The addition of ribitol to basal (malt-yeast extract) medium enhanced the relative growth rates of all three LFF. R. farinacea (CH050010), R. farinacea (40403) and R. fastigiata (H06127) showed 35.3%, 29.0% and 29.3% higher growth rates, respectively, compared to the control. IBA (indole-3-butyric acid) and TIBA (2,3,5-tridobenzoic acid) also increased growth rates of the LFF by 34 to 64% and 7 to 28%, respectively, compared to the control. The combination of ribitol with IBA or TIBA synergistically increased the growth of all LFF. For example, ribitol and IBA treatments increased growth rates of R. farinacea (CH050010), R. farinacea (40403) and R. fastigiata (H06127) by 79.4%, 40.3% and 72.8% in, respectively, compared to those grown on the basal medium. The stimulating effect of ribitol and IBA on the LFF growth induced vertical development of the fungal mass in culture. We suggest that lichen-forming fungal growth of Ramalina lichens can be stimulated aposymbiotically by supplementing polyols and plant hormones to the basal medium in the mass production of lichen secondary metabolites under large scale culture conditions.

Effect of a Bacterial Grass Culture on the Plant Growth and Disease Control in Tomato

  • Lee, Yong Seong;Naing, Kyaw Wai;Kim, Kil Yong
    • Research in Plant Disease
    • /
    • v.23 no.4
    • /
    • pp.295-305
    • /
    • 2017
  • This study aimed to investigate the plant growth-promoting and biocontrol potential of a grass culture with Paenibacillus ehimensis KWN8 on tomato. For this experiment, treatments of a chemical fertilizer (F), a bacterial grass culture (G), a 1/3 volume of G plus 2/3 F (GF), and F plus a synthetic fungicide (FSf) were applied to tomato leaves and roots. The result showed that the severity of Alternaria solani and Botrytis cinerea symptoms were significantly reduced after the application of the bacterial grass culture (G and GF) and FSf. In addition, root mortality in G and GF was lower compared to F. Tomato plants treated with G or GF had better vegetative growth and yield compared to F. Application of G affected the fungal and bacterial populations in the soil. In conclusion, treatment with a bacterial grass culture decreased disease severity and increased tomato growth parameters. However, there were no statistically significant correlations between disease occurrence and tomato yields. This experiment presents the possibility to manage diseases of tomato in an environmentally friendly manner and to also increase the yield of tomato by using a grass culture broth containing P. ehimensis KWN38.