1 |
Bakker, P. A. H. M., Pieterse, C. M. J. and Van Loon, L. C. 2007. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239-243
DOI
ScienceOn
|
2 |
Beckers, G. J. and Comath, U. 2007. Priming for stress resistance: from the lab to the field. Curr. Opin. Plant BioI. 10:425-431
DOI
ScienceOn
|
3 |
Benhamou, N., Kloepper, J. W., Quadt-Hallman, A. and Tuzun, S. 1996. Induction of defenserelated ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol. 112:919-929
DOI
PUBMED
|
4 |
Comath, U., Pieterse, C. M. and Mauch-Mani, B. 2002. Priming in plant-pathogen interactions. Trends. Plant Sci. 7:210-216
DOI
ScienceOn
|
5 |
Comath, U., Beckers, G. J., Flors, V., Garcia-Agustin, P., Jakab, G., Mauch, F., Newman, M. A., Pieterse, C. M., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L. and Mauch-Mani, B. 2006. Priming: getting ready for battle. Mol. Plant-Microbe Interact. 19:1062-1071
DOI
ScienceOn
|
6 |
Kang, S. H., Cho, H. S., Cheong, H., Ryu, C. M., Kim, J. F. and Park, S. H. 2007. Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L.). J. Microbiol. Biotechnol. 17:96-103
PUBMED
|
7 |
Kim, K. J., Park, C. J., An, J. M., Ham, B. K, Lee, B. J. and Paek, K. H. 2005. CaAlaAT1 catalyzes the alanine: 2-oxoglutarate amonitransferase reaction during the resistance response against Tobacco mosaic virus in hot pepper. Planta 221:857-867
DOI
ScienceOn
|
8 |
Kim, K. J., Park, C. J., Ham, B. K., Choi, S. B., Lee, B. J. and Paek, K. H. 2006. Induction of a cytosolic pyruvatekinase 1 gene during the resistance response to Tobacco mosaic virus in Capsicum annuum. Plant Cell. Rep. 25:359-364
DOI
ScienceOn
|
9 |
Kim, Y. J. and Hwang, B. K. 2000. Pepper gene encoding a basic pathogenesis-related1 protein is pathogen and ethylene inducible. Physiol. Plant 108:51-60
DOI
|
10 |
Kloepper, J. W. 1993. Plant growth-promoting rhizobacteria as biological control agents. In: F. B. Metting Soil Microbial Ecology: Applications in Agricultural and Environmental Management, Marcel Dekker Inc., New York, pp 255-274
|
11 |
Kloepper, J. W., Ryu, C. M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266
DOI
ScienceOn
|
12 |
Kloepper, J. W., Gutierrez-Estrada, A. and McInroy, J. A. 2007. Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Can. J. Microbiol. 53:159-67
DOI
ScienceOn
|
13 |
Malolepsza, U. 2006. Induction of disease resistance by acibenzolar-S-methyl and o-hydroxyethylorutin against Botrytis cinerea in tomato plants. Crop Prot. 25:956-962
DOI
ScienceOn
|
14 |
Raupach, G. S. and Kloepper, J. W. 1998. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158-1164
DOI
ScienceOn
|
15 |
Park, C. J., Kim, K. J., Shin, R., Park, J. M., Shin, Y. C. and Paek, K. H. 2004. Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antivial pathway. Plant J. 37:186-198
DOI
PUBMED
ScienceOn
|
16 |
Pozo, M. J. and Azcon-Aguilar, C. 2007. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10:393-398
DOI
ScienceOn
|
17 |
Quilis, J., Pefias, G., Messeguer, J., Brugidou, C. and San Seg-undo, B. 2008. The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice. Mol. Plant-Microbe Interact. 21:1215-1231
DOI
ScienceOn
|
18 |
Ryu, C. M., Kim, J. W., Choi, O. H., Park, S. Y., Park, S. H. and Park, C. S. 2005. Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea. J. Microbiol. Biotechnol. 15:984-991
|
19 |
Slaughter, A. R, Hamiduzzaman, M. M., Gindro, K., Neuhaus, J. M. and Mauch-Mani, B. 2008. Beta-aminobutyric acid-induced resistance in grapevine against downy mildew: involvement of pterostilbene. Eur. J. Plant Pathol. 122:185-195
DOI
ScienceOn
|
20 |
Walters, D. R. and Boyle, C. 2005. Induced resistance and allocation costs: what is the impact of pathogen challenge? Physiol. Mol. Plant Pathol. 66:40-44
DOI
ScienceOn
|
21 |
Abu, I. P., Kim, S., Lee, Y. H. and Suh, S. C. 2007. Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiol. 143:838-848
DOI
ScienceOn
|
22 |
Attaran, E., Rostas, M. and Zeier, J. 2008. Pseudomonas syringae elicits emission of the terpenoid (E,E)-4,8,12-trimethyl-1,3,7,1l-tridecatetraene in Arabidopsis leaves via jasmonate signaling and expression of the terpene synthase TPS4. Mol. Plant-Microbe. Interact. 21:1482-1497
DOI
ScienceOn
|
23 |
Chung, E., Ryu, C. M., Oh, S. K. and Choi, D. 2006. The essential role of pepper CaSgt1 and CaSkp1 genes in plant development and basal resistance. Physiol. Plant 126:605-612
DOI
|
24 |
Jetiyanon, K. and Kloepper, J. W. 2002. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol. Control 24:285-291
DOI
ScienceOn
|
25 |
Yi, S. Y., Kim, J. H., Joung, Y. H., Lee, S., Kim, W. T., Yu, S. H. and Choi, D. 2004. The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol. 136:2862-2874
DOI
ScienceOn
|
26 |
Heil, M. and Kost, C. 2006. Priming of indirect defences. Ecol. Lett. 9:813-817
DOI
ScienceOn
|
27 |
Kim, Y. C., Yi, S. Y., Mang, H. G., Seo, Y. S., Kim, W. T. and Choi, D. 2001. Pathogen-induced expression of cyclo-oxygenase homologue in hot pepper (Capsicum annuum cv. Pukang). J. Exp. Bot. 53:383-385
DOI
ScienceOn
|
28 |
Verhagen, B. W, Glazebrook, J., Zhu, T., Chang, H. S., van Loon, L. C. and Pieterse, C. M. 2004. The transcriptome of Rhizobacteria-Induced Systemic Resistance in Arabidopsis. Mol. Plant Microbe Interact. 17:895-908
DOI
ScienceOn
|
29 |
Akram, A., Ongena, M., Duby, F., Dommes, J. and Thonart, P. 2008. Systemic resistance and lipooxygenase-related defence response induced in tomato by Pseudomonas putida strain BTP1. BMC Plant BioI. 8:113-124
DOI
ScienceOn
|
30 |
Oh, S. K., Lee, S., Chung, E., Park, J. M., Yu, S. H., Ryu, C. M. and Choi, D. 2006. Insight into Types I and II nonhost resistance using expression patterns of defense-related genes in tobacco. Planta 213:1102-1107
DOI
|
31 |
Conn, V. M., Walker, A. R. and Franco, C. M. 2008. Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21:208-218
DOI
ScienceOn
|
32 |
Hossain, M. M., Sultana, F., Kubota, M. and Hyakumachi, M. 2008. Differential inducible defense mechanisms against bacterial speck pathogen in Arabidopsis thaliana by plant-growth-promoting fungus Penicillium. Plant Soil 304:227-239
DOI
|
33 |
Cartieaux, F., Contesto, C., Gallou, A., Desbrosses, G, Kopka, J., Taconnat, L., Renou, J. P. and Touraine, B. 2008. Simultaneous interaction of Arabidopsis thaliana with Bradyrhizobium Sp. strainORS278 and Pseudomonas syringae pv. tomato DC3000 leads to complex transcriptome changes. Mol. Plant-Microbe Interact. 21:244-259
DOI
ScienceOn
|
34 |
Kim, Y. C., Kim, S. Y, Paek, K. H., Choi, D. and Park, J. M. 2006. Suppression of CaCYP1, a novel cytochrome P450 gene, compromises the basal pathogen defense response of pepper plants. Biochem. Biophys. Res. Commun. 345:638-645
DOI
ScienceOn
|
35 |
Kokalis-Burelle, N., Vavrina, C. S., Rosskopf, E. N. and Shelby, R. A. 2002. Field evaluation of plantgrowth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257-266
DOI
ScienceOn
|
36 |
Park, C. J., Shin, Y. C., Lee, B. J., Kim, K. J., Kim, J. K. and Paek, K. H. 2006. A hot pepper gene encoding WRKY transcription factor is induced during hypersensitive response to Tobacco mosaic virus and Xanthomonas campestris. Planta 223:168-179
DOI
|
37 |
Ton, J., Jakab, G., Toquin, V., Iavicoli, V., Maeder, M., Metraux, J. P. and Mauch-Mania, B. 2005. Dissecting the b-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell 17:987-999
DOI
ScienceOn
|
38 |
Jakab, G, Ton, J., Flors, V., Zimmerli, L., Metraux, J. P. and MauchMani, B. 2005. Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses Plant Physiol. 139:267-274
DOI
ScienceOn
|
39 |
Bais, H. P., Weir, T. L., Perry, L. G, Gilroy, S. and Vivanco, J. M. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57:233-266
DOI
PUBMED
ScienceOn
|
40 |
Hacisalihoglu, G., Longo, P., Olson, S. and M, Momol. T. 2007. Bacterial wilt induced changes in nutrient distribution and biomass and the effect of acibenzolar-S-methyl on bacterial wilt in tomato. Crop Prot. 26:978-982
DOI
ScienceOn
|
41 |
Goellner, K. and Comath, U. 2008. Priming: it's all the world to induced disease resistance. Eur. J. Plant Pathol. 121:233-242
DOI
ScienceOn
|
42 |
van Hulten, M., PeIser, M., van Loon, L. C., Pieterse, C. M. and Ton, J. 2006. Costs and benefits of priming for defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 103:5602-5607
DOI
ScienceOn
|
43 |
Yoo, T. H., Park, C. l., Ham, B. K., Kim, K. l. and Paek, K. H. 2004. Ornithine decarboxylase gene (CaODCl) is specifically induced during TMV-mediated but salicylate-independent resistant response in hot pepper. Plant Cell Physiol. 45:1537-1542
DOI
ScienceOn
|
44 |
Park, C. J., Shin, R., Park, J. M., Lee, G. J., Yoo, T. H. and Paek, K.H. 2001. Hot pepper cDNA encoding a ge-at-valuation of plant pathogenesis-related protein 4 is induced during the resistance response to tobacco mosaic virus. Mol. Cells. 11:122-127
PUBMED
|
45 |
Edreva, A. 2005. Pathogenesis-related proteins: research progress in the last 15years. Plant Physiol. 31:105-124
|
46 |
Murphy, J. F., Reddy, M. S., Ryu, C. M., Kloepper, J. W. and Li, R. 2003. Rhizobacteria-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus. Phytopathology 93:1301-1307
DOI
ScienceOn
|
47 |
Shin, R., Kim, M. J. and Paek, K. H. 2003. The CaIinl(Capsicum annuum TMV-induced Clone 1) and CaTml-2 genes are linked head-to-head and share a bidirectional promoter. Plant Cell Physiol. 44:549-554
DOI
ScienceOn
|
48 |
Alstrom, S. 1991. Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads. J. Gen. Appl. MicrobioI. 37:495-501
DOI
|
49 |
Jetiyanon, K., Fowler, W. D. and Kloepper, J. W. 2003. Broad-spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Dis. 87:1390-1394
DOI
ScienceOn
|
50 |
Sadd, B. M., Kleinlogel, Y., Schmid-Hempel, R and SchmidHempel, P. 2005. Trans-generational immune priming in a social insect. Biol. Lett. 1:386-388
DOI
ScienceOn
|
51 |
Ryu, C. M., Anand, A., Kang, L. and Mysore, K. S. 2004. Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. Plant J. 40:322-331
DOI
ScienceOn
|
52 |
van Peer, R, Niemann, G. J. and Schippers, B. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728-734
DOI
|
53 |
van Loon, L. C. 2007. Plant responses to plant growth-promoting rhizobacteria Eur. J. Plant Pathol. 119:243-254
DOI
ScienceOn
|
54 |
Weller, D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26:379-407
DOI
ScienceOn
|
55 |
D'Arcy, W. G. 1986. Solanaceae biology and systematic, Columbia University Press
|
56 |
Gomez-Ariza, J., Campo, S., Rufat, M., Estopa, M., Messeguer, J., San Segundo, B. and Coca, M. 2007. Sucrose-mediated priming of plant defense responses and broad-spectrum disease resistance by overexpression of the maize pathogenesis-related PRms protein in rice plants. Mol. Plant-Microbe Interact. 20:832-842
DOI
ScienceOn
|
57 |
Park, C. J., An, J. M., Shin, Y. C., Kim, K. J., Lee, B. J. and Paek, K. H. 2004b. Molecular characterization of pepper germinlike protein as the novel PR -16 family of pathogenesis-related proteins isolated during the resistance response to viral and bacterial infection. Planta 219:797-806
PUBMED
|
58 |
Ryu, C. M., Murphy, J. F., Reddy, M. S. and Kloepper, J. W. 2007. A two-strain mixture of rhizobacteria elicits inducation of systemic resistance against Pseudomonas syringae and Cucumber mosaic virus coupled to promotion of plant growth on Arabidopsis thaliana. J. Microbiol. Biotechnol. 17:280-286
PUBMED
|
59 |
Nam, Y. W. and Paek, K. H. 2001. Isolation of pepper mRNAs differentially expressed during the hypersensitive response to tobacco mosaic virus and characterization of a proteinase inhibitor gene. Plant Sci. 161:727-737
DOI
ScienceOn
|
60 |
De Vleesschauwer, D., Djavaheri, M., Bakker, P. A. and Hofie, M. 2008. Pseudomonas fluorescens WCS 374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol. 148:1996-2012
DOI
ScienceOn
|
61 |
Wei, G., Kloepper, J. W. and Tuzun, S. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth- promoting rhizobacteria. Phytopathology 81:1508-1512
DOI
|
62 |
Kim, M. S., Cho, S, M., Kang, E. Y., Im, Y. J., Hwangbo, H., Kim, Y. C., Ryu, C. M., Yang, K. Y., Chung, G. C. and Cho, B. H. 2008. Galactinol is a signaling component of the induced systemic resistance caused by Pseudomonas chlororaphis O6 root colonization. Mol. Plant-Microbe Interact. 21:1643-1653
DOI
ScienceOn
|
63 |
Aime, S., Cordier. C., Alabouvette, C. and Olivain C. 2008. Comparative analysis of PR gene expression in tomato inoculated with virulent Fusarium oxysporum f. sp. lycopersici and the biocontrol strain F oxysporum Fo47. Physiol. Mol. Plant Pathol. 73:9-15
DOI
ScienceOn
|
64 |
Jung, W. J., Jin, Y. L., Kim, K. Y., Park, R. D. and Kim, T. H. 2005. Changes in pathogenesis-related proteins in pepper plants with regard to biological control of phytophthor a blight with Paenibacillus illinoisensis. Biocontrol. 50:165-178
DOI
ScienceOn
|
65 |
Ton, J., D'Alessandro, M., Jourdie, V., Jakab, G., Karlen, D., Held, M., Mauch-Mani, B., Turlings, T. C. and Turlings, T. 2006. Priming by airborne signals boosts direct and indirect resistance in maize. Plant J. 49:16-26
DOI
ScienceOn
|
66 |
Zhang, S., Reddy, M. S. and Kloepper, l. W. 2004. Tobacco growth enhancement and blue mold protection by rhizobacteria: relationship between plant growth promotion and systemic disease protection by PGPR strain 90-166. Plant Soil 262:277-288
DOI
ScienceOn
|
67 |
Heil, M. 1999. Systemic acquired resistance available information and open ecological questions. J. Ecol. 87:341-346
DOI
ScienceOn
|
68 |
Pieterse, C. M. J., van Wees, S. C., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J. and van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571-1580
DOI
ScienceOn
|
69 |
Emmert, E. A. and Handelsman, J. 1999. Biocontrol of plant disease: a (gram-) positive perspective. FEMS Microbiol. Lett. 171:1-9
DOI
ScienceOn
|
70 |
Heil, M. 2001. The ecological concept of costs of induced systemic resistance (ISR). Eur. J. Plant Pathol. 107:137-146
DOI
ScienceOn
|
71 |
Ramamoorthy, V., Raguchander, T. and Samiyappan, R. 2002. Enhancing resistance of tomato and hotpepper to Pythium diseases by seed treatment with fluorescent pseudomonads. Eur. J. Plant Pathol. 108:429-441
DOI
ScienceOn
|
72 |
Heil, M., Hilpert, A., Kaiser, W. and Linsenmair, K. E. 2000. Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J. Ecol. 88:645-654
DOI
ScienceOn
|
73 |
Park, C. J., Shin, R., Park, J. M., Lee, G. J., You, J. S. and Paek, K. H. 2002a. Induction of pepper cDNA encoding a lipid transfer protein during the resistance response to tobacco mosaic virus. Plant Mol. Biol. 48:243-254
DOI
ScienceOn
|
74 |
Pflieger, S., Palloix, A., Caranta, C., Blattes, A. and Lefebvre, V. 2001. Defense response genes colocalize with quantitative disease resistance loci in pepper. Theor. Appl. Genet. 103:920-929
DOI
ScienceOn
|
75 |
Kim, M. S., Kim, Y. C. and Cho, B. H. 2004. Gene expression analysis in cucumber leaves primed by root colonization with Pseudomonas chlororaphis O6 upon challenge-inoculation with Corynespora cassiicola. Plant BioI. 6:105-108
DOI
ScienceOn
|
76 |
Chassot, C., Buchala, A., Schoonbeek, H. J., M6traux, J. P. and Lamotte, O. 2008. Wounding of Arabidopsis leaves causes a powerful but transient protection against Botrytis infection. Plant J. 55:555-567
DOI
ScienceOn
|