Browse > Article
http://dx.doi.org/10.4014/jmb.1101.01012

The Plant Growth-Promoting Fungus Aspergillus ustus Promotes Growth and Induces Resistance Against Different Lifestyle Pathogens in Arabidopsis thaliana  

Salas-Marina, Miguel Angel (Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica)
Silva-Flores, Miguel Angel (Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica)
Cervantes-Badillo, Mayte Guadalupe (Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica)
Rosales-Saavedra, Maria Teresa (Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica)
Islas-Osuna, Maria Auxiliadora (Laboratorio de Genetica y Biologia Molecular de Plantas, Centro de Investigacion en Alimentacion y Desarrollo)
Casas-Flores, Sergio (Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.7, 2011 , pp. 686-696 More about this Journal
Abstract
To deal with pathogens, plants have evolved sophisticated mechanisms including constitutive and induced defense mechanisms. Phytohormones play important roles in plant growth and development, as well as in the systemic response induced by beneficial and pathogen microorganisms. In this work, we identified an Aspergillus ustus isolate that promotes growth and induces developmental changes in Solanum tuberosum and Arabidopsis thaliana. A. ustus inoculation on A. thaliana and S. tuberosum roots induced an increase in shoot and root growth, and lateral root and root hair numbers. Assays performed on Arabidopsis lines to measure reporter gene expression of auxin-induced/ repressed or cell cycle controlled genes (DR5 and CycB1, respectively) showed enhanced GUS activity, when compared with mock-inoculated seedlings. To determine the contribution of phytohormone signaling pathways in the effect elicited by A. ustus, we evaluated the response of a collection of hormone mutants of Arabidopsis defective in auxin, ethylene, cytokinin, or abscisic acid signaling to the inoculation with this fungus. All mutant lines inoculated with A. ustus showed increased biomass production, suggesting that these genes are not required to respond to this fungus. Moreover, we demonstrated that A. ustus synthesizes auxins and gibberellins in liquid cultures. In addition, A. ustus induced systemic resistance against the necrotrophic fungus Botrytis cinerea and the hemibiotrophic bacterium Pseudomonas syringae DC3000, probably through the induction of the expression of salicylic acid, jasmonic acid/ethylene, and camalexin defense-related genes in Arabidopsis.
Keywords
Aspergillus; plant growth-promoting fungus; Arabidopsis; salicylic acid; jasmonic acid; systemic resistance;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Himanen, K., E. Boucheron, S. Vanneste, E. J. de Almeida, D. Inze, and T. Beeckman. 2002. Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14: 2339-2351.   DOI   ScienceOn
2 Hobbie, L. and E. Estelle. 1995. The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 7: 211-220.   DOI   ScienceOn
3 Hossain, M. Md., F. Sultana, M. Kubota, H. Koyama, and M. Hyakumachi. 2007. The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant Cell Physiol. 48: 1724-1736.   DOI   ScienceOn
4 Hua, J. and E. Meyerowitz. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94: 262-271.
5 Glazebrook, J., W. Chen, B. Estes, H. S. Chang, C. Nawrath, J. P. Métraux, T. Zhu, and F. Katagiri. 2003. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J. 34: 217-228.   DOI   ScienceOn
6 Glickmann, E. and Y. Dessaux. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61: 763-796.
7 Harman, G. E., C. R. Howell, A. Viterbo, I. Chet, and M. Lorito. 2004. Trichoderma species - Opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2: 43-56.   DOI   ScienceOn
8 Higuchi, M., S. M. Pischke, P. A. Mähöne, K. Miyawaki, Y. Hashimoto, M. Seki, et al. 2004. In planta functions of the Arabidopsis cytokinin receptor family. Proc. Natl. Acad. Sci. USA 101: 8821-8826.   DOI   ScienceOn
9 Ferreira, P. C., A. Hemerly, M. van Montagu, and D. Inzé. 1994. Control of cell proliferation during plant development. Plant Mol. Biol. 26: 1289-1303.   DOI   ScienceOn
10 Finkelstein, R. R. 1994. Mutation at two new Arabidopsis ABA response loci is similar to the abi3 mutations. Plant J. 5: 765- 771.   DOI   ScienceOn
11 King, E. O., M. K. Ward, and D. E. Raney. 1954. Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 44: 301-307.
12 Falasca, G., D. Zaghi, M. Possenti, and M. M. Altamura. 2004. Adventitious root formation in Arabidopsis thaliana thin cell layers. Plant Cell Rep. 23: 17-25.
13 Contreras-Cornejo, H. A., R. L. Macias, P. C. Cortés, and J, Lopez-Bucio. 2009. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 149: 1579-1592.   DOI   ScienceOn
14 Costacurta, A. and J. Vanderleyden. 1995. Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol. 21: 1-18.   DOI   ScienceOn
15 Cuppels, D. A. 1986. Generation and characterization of Tn5 insertion mutations in Pseudomonas syringae pv. tomato. Appl. Environ. Microbiol. 51: 323-327.
16 Dong, X. 2001. Genetic dissection of systemic acquired resistance. Curr. Opin. Plant Biol. 4: 309-314.   DOI   ScienceOn
17 Jefferson, A. R., A. T. Kavanagh, and W. M. Bevan. 1987. GUS fusions: Beta-glucuronidase as a sensitive and gene fusion marker in higher plants. EMBO J. 6: 3901-3907.
18 Kazan, K. and J. M. Manners. 2009. Linking development to defense: Auxin in plant-pathogen interactions. Trends Plant Sci. 14: 373-382.   DOI   ScienceOn
19 Tsavkelova, E. A., S. Y. Klimova, T. A. Cherdyntseva, and A. I. Netrusov. 2006. Microbial producers of plant growth stimulators and their practical use: A review. Appl. Biochem. Microbiol. 42: 117-126.   DOI   ScienceOn
20 Stals, H. and D. Inzé. 2001. When plant cells decide to divide. Trends Plant Sci. 6: 359-364.   DOI   ScienceOn
21 Ulmasov, T., J. Murfett, G. Hagen, and T. Guilfoyle. 1997. Aux/ IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9: 1963-1971.   DOI
22 White, T. J., T. Brunts, S. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-322. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (eds.). PCR Protocols: A Guide to Methods and Applications. Academic Press, Inc. New York.
23 Raeder, U. and P. Broda. 1989. Rapid preparation of DNA from filamentous fungi. Lett. Appl. Microbiol. 1: 17-20.
24 Woodward, A. W. and B. Bartel. 2005. Auxin: Regulation, action, and interaction. Annu. Bot. 95: 707-735.   DOI   ScienceOn
25 Pieterse, J. M. C., A. Leon-Reyes, S. Van dern Ent, and S. C. M. Van Wees. 2009. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5: 308-316.   DOI   ScienceOn
26 Pozo, M. J. and C. Azcón-Aguilar. 2007. Unraveling mycorrhizainduced resistance. Curr. Opin. Plant Biol. 10: 393-398.   DOI   ScienceOn
27 Spoel, S., A. koornneef, S. Laessens, J. Korzelius, J. Van Pelt, M. Mueller, et al. 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15: 760-770.   DOI   ScienceOn
28 Schenk, P. M., K. Kazan, I. Wilson, J. P. Anderson, T. Richmond, S. C. Somerville, and J. M. Manners. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 97: 11655-11660.   DOI   ScienceOn
29 Shani, E., O. Yanai, and N. Ori. 2006. The role of hormones in shoot apical meristem function. Curr. Opin. Plant Biol. 9: 484- 489.   DOI   ScienceOn
30 Spoel, S., J. Johnson, and X. Dong. 2007. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl. Acad. Sci. USA 104: 8842- 18847.
31 Spoel, S. H. and X. Dong. 2008. Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3: 348-351.   DOI   ScienceOn
32 Lucero, M. E., J. R. Barrow, P. Osuna, I. Reyes, and S. E. Duke. 2006. Enhancing native grass productivity by cocultivating with endophyte-laden calli. Rangel. Ecol. Manage. 61: 124-130.
33 Lugtenberg, B. and F. Kamilova. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541-556.   DOI   ScienceOn
34 Nishimura, C., Y. Ohashi, S. Sato, T. Kato, S. Tabata, and C. Ueguchi. 2004. Genetic analysis of Arabidopsis histidine kinase genes encoding cytokinin receptors reveals their overlapping biological functions in the regulation of shoot and root growth in Arabidopsis thaliana. Plant Cell 16: 1365-1377.   DOI   ScienceOn
35 Luschnig, C., A. R. Gaxiola, P. Grisafi, R. Gerald, and R. G. Fink. 1998. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 12: 2175-2187.   DOI   ScienceOn
36 Masucci, J. D. and W. J. Schiefelbein. 1994. The rhd6 mutation of Arabidopsis thaliana alters root hair initiation through an auxin and ethylene associated process. Plant Physiol. 106: 1335-1346.   DOI
37 Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plant 15: 473-497.   DOI
38 Pickett, B. F., K. A. Wilson, and M. Estelle. 1990. The auxin mutation of Arabidopsis confers both auxin and ethylene resistance. Plant Physiol. 94: 1462-1466.   DOI   ScienceOn
39 Asselbergh, B., D. De Vleesschauwer, and M. Höfte. 2008. Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol. Plant Microbe Interact. 21: 709-719.   DOI   ScienceOn
40 Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.   DOI
41 Bais, H. P., S. W. Park, T. L. Weir, R. M. Callaway, and J. M. Vivanco. 2004. How plants communicate using the underground information superhighway. Trends Plant Sci. 9: 26-32.   DOI   ScienceOn
42 Berrios, J., A. Illanes, and G. Aroca. 2004. Spectrophotometric method for determining gibberellic acid in fermentation broths. Biotech. Lett. 26: 67-70.   DOI
43 Barrow, J. R. and P. Osuna. 2002. Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. J. Arid Environ. 51: 449-459.   DOI   ScienceOn
44 Bostock, R. M. 2005. Signal crosstalk and induced resistance: Straddling the line between cost and benefit. Annu. Rev. Phytopathol. 43: 545-580.   DOI   ScienceOn
45 Colon-Carmona, A., R. You, T. Haimovitch-Gal, and P. Doerner. 1999. Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. Plant J. 20: 503-508.   DOI   ScienceOn
46 Beckers, G. J. and S. H. Spoel. 2006. Fine-tuning plant defence signalling: Salicylate versus jasmonate. Plant Biol. (Stuttg). 8: 1-10.   DOI   ScienceOn
47 Bent, E. 2006. Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF), pp. 225-258. In S. Tuzun and E. Bent (eds.). Multigenic and Induced Systemic Resistance in Plants. Springer-Verlag, New York.