• Title/Summary/Keyword: plant disease

Search Result 3,916, Processing Time 0.033 seconds

Evaluation of different molecular methods for detection of Senecavirus A and the result of the antigen surveillance in Korea during 2018

  • Heo, JinHwa;Lee, Min-Jung;Kim, HyunJoo;Lee, SuKyung;Choi, Jida;Kang, Hae-Eun;Nam, Hyang-Mi;Nah, JinJu
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.1
    • /
    • pp.15-19
    • /
    • 2021
  • Senecavirus A (SVA), previously known as Seneca Valley virus, can cause vesicular disease and neonatal losses in pigs that is clinically indistinguishable from foot-and-mouth disease virus (FMDV). After the first case report in Canada in 2007, it had been restrictively identified in North America including United States. But, since 2015, SVA emerged outside North America in Brazil, and also in several the Asian countries including China, Thailand, and Vietnam. Considering the SVA occurrence in neighboring countries, there has been a high risk that Korea can be introduced at any time. In particular, it is very important in terms of differential diagnosis in the suspected case of vesicular diseases in countries where FMD is occurring. So far, several different molecular detection methods for SVV have been published but not validated as the reference method, yet. In this study, seven different molecular methods for detecting SVA were evaluated. Among them, the method by Flowler et al, (2017) targeted to 3D gene region with the highest sensitivity and no cross reaction with other vesicular disease agents including FMDV, VSV and SVD, was selected and applied further to antigen surveillance of SVA. A total of 245 samples of 157 pigs from 61 farms submitted for animal disease diagnose nationwide during 2018 were tested all negative. In 2018, no sign of SVA occurrence have been confirmed in Korea, but the results of the surveillance for SVA needs to be continued and accumulated at a high risk of SVA in neighboring countries.

Effects of Seed-treatment Fungicides on Bakanae Disease of Rice

  • Park, Hyo-Won;Shim, Hong-Sik;Kim, Yong-Ki;Yeh, Wan-Hae;Kim, Choong-Hoe
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.91.1-91
    • /
    • 2003
  • Bakanae disease, caused by Gibberella fujikuroi (anamorph Fusarium moniliforme J. Sheldon), a typical seed-borne disease of rice occurs from nursery to paddy fields. Consequently, chemical seed disinfectants is the most efficient control method. Several seed treatment methods with various fungicides were attempted to inhibit disease. Spray and 24 hrs immersion of seeds using prochloraz emulsion reduced disease infection and the control value were 99.3 and 100%, respectively. In contrast, dressing to wet seeds thiophanate-methyl+thiram wp and benomyl+thiram wp reduced disease infection more effectively than 24 hrs immersion of seeds. However, dressing of carpropamid+imidacloprid+fludioxonil wp to wet seeds did not reduced disease as well as wettable liquid of fludioxonil. The results suggest that the bakanae disease might be disinfected effectively by 24 hrs immersion of seeds in prochloraz emulsion and seed dressing of fungicides.

  • PDF

Malignant melanoma in a grey pony, Korea (회색 조랑말에서 발생한 악성 흑색종 증례)

  • Kim, Ji-Hyeon;Lee, Hyunkyoung;Lee, Kyunghyun;Baek, Kanghyun;Choi, Eunjin;So, ByungJae;Yang, Siyeon
    • Korean Journal of Veterinary Service
    • /
    • v.39 no.3
    • /
    • pp.199-204
    • /
    • 2016
  • A 16 year-old female grey pony was presented to Animal and Plant Quarantine agency for diagnosis in Feb 2, 2015. At necropsy, multiple pigmented masses, likely melanomas, were detected peri-anally and under the tail. Further metastatic spread to the spleen, liver, lung and lymph nodes was also identified. Histopathologically, anaplastic and pleomorphic melanocytes were observed in the mass. By immunohistochemistry, PNL2, S100 and PGP 9.5 protein were detected, but Melan A was not expressed in the neoplastic melanocytes. Based on the pathological and immunohistochemical examination, we diagnosed this case as malignant melanoma in a grey pony. To the authors' knowledge, this is the first report of equine malignant melanoma in republic of Korea.

Necrotizing Enteritis Caused by Pharyngostomum cordatum Infection in a Stray Cat

  • Kim, Ji-Hyeon;Lee, Kyunghyun;Sohn, Woon-Mok;Kim, Ha-Young;Lee, Yu-Ran;Choi, Eun-Jin;So, ByungJae;Jung, Ji-Youl
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.1
    • /
    • pp.17-20
    • /
    • 2019
  • A stray female cat of unknown age, presenting bright red watery diarrhea, was submitted to the Animal and Plant Quarantine Agency for diagnosis. In the small intestines extracted from the necropsied cat, numerous white oval-shaped organisms were firmly embedded in the mucosa and there was thickening of intestinal wall. Histopathological analysis revealed severe necrotizing enteritis, together with atrophied intestinal villi, exfoliated enterocytes, and parasitic worms. Recovered worms were identified as Pharyngostomum cordatum by morphological observation and genetic analysis. Although P. cordatum is known to occur widely in Korea, this is the first clinical description of an infection by P. cordatum causing severe feline enteritis.

Klebsiella pneumoniae infection secondary to bovine viral diarrhea in two prematurely born calves

  • Lee, Kyunghyun;Kim, Ha-Young;Choi, Eun-Jin;Lee, Kyoung-Ki;So, ByungJae;Jung, Ji-Youl
    • Korean Journal of Veterinary Research
    • /
    • v.60 no.3
    • /
    • pp.183-186
    • /
    • 2020
  • This paper describes the development of neurological signs of two prematurely born calves four days after birth. The pathological examination results indicated fibrinopurulent polyserositis, including meningoencephalitis with suppurative bronchopneumonia. Bovine viral diarrhea virus subtype 2a was detected in most of the internal organs, and the bacterial colonies cultured from the samples were identified as Klebsiella (K.) pneumoniae. Molecular analysis via multilocus sequence typing identified a different K. pneumoniae isolate in each calf-type 14 in calf A and type 65 in calf B. This is the first report identifying K. pneumoniae sequence types 14 and 65 in cattle.

A rare case of bovine tuberculosis caused by Mycobacterium bovis in a domestic rabbit

  • Roh, Su Gwon;Jang, Yun-Ho;Kim, Jongho;Lee, Kyunghyun;So, Byungjae;Choi, Eun-Jin
    • Korean Journal of Veterinary Research
    • /
    • v.60 no.2
    • /
    • pp.85-88
    • /
    • 2020
  • A 12-month-old domestic rabbit died suddenly without specific clinical signs. Gross examination revealed irregular yellowish hepatic nodules with pus in the submandibular muscles, lungs, uterus, and small intestines. Histopathological examination of the liver showed granulomatous inflammation with acid-fast-positive bacteria. Mycobacterium bovis SB1040 was identified by polymerase chain reaction and spoligotyping, and Pasteurella multocida was isolated from the multiple lesions. This report demonstrates the pathological features of rare bovine tuberculosis (bTB) in a domestic rabbit, the first case in the Republic of Korea. To ensure public safety, we recommend routine monitoring of rabbits to control the incidence of bTB.

Review of Researches on Clubroot Disease of Chinese Cabbage in Korea and Future Tasks for Its Management (우리나라 배추 뿌리혹병 연구 현홍과 향후과제)

  • Kim, Choong-Hoe;Cho, Won-Dae;Lee, Sang-Bum
    • Research in Plant Disease
    • /
    • v.9 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • Clubroot disease of curcifer crops caused by Plasmodiophora brassicae had been first reported in 1928 in Korea, and maintained mild occurrence until 1980s. Since 1990s the disease has become severe in alpine areas of Kyonggi and Kangwon, gradually spread to plain fields throughout the country, and remains as the great-est limiting factor for its production. Researches on the disease has begun in late 1990s after experiencing severe epidemics. Survey of occurrence and etiological studies have been carried out, particularly, on the pathogen physiology, race identification, quantification of soil pathogen population, and host spectrum of the pathogen. Ecology of gall formation and its decay, yield loss assessment associated with time of infection, and relationships between crop rotation and the disease incidence was also studied during late 1990s. In studies of its control, more than 200 crucifer cultivars were evaluated for their resistance to the disease. Lime applica-tion to field soil was also attempted to reduce the disease incidence. Resistant radish and welsh onion were recommended as rotation crops with crucifers after 3-year field experiments. However, so for, most studies on clubroot disease in Korea have been focused on chemical control. Two fungicides, fluazinam and flusulfamide, were selected and extensively studied on their application technologies and combination effects with lime application or other soil treatment. To develop environmentally-friendly control methods, solar-disinfection of soil, phosphoric acid as a nontoxic compound, and root-parasiting endophytes as biocontrol agents were examined for their effects on the disease in fields. In the future, more researches are needed to be done on development of resistant varieties effective to several races of the pathogen, establishment of economically-sound crop rotation system, and improvement of soil-disinfection technique applicable to Korean field condi-tion, and development of methodology of pretreatment of fungicides onto seeds and seedbeds.

An Analysis of Plant Diseases Identification Based on Deep Learning Methods

  • Xulu Gong;Shujuan Zhang
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.319-334
    • /
    • 2023
  • Plant disease is an important factor affecting crop yield. With various types and complex conditions, plant diseases cause serious economic losses, as well as modern agriculture constraints. Hence, rapid, accurate, and early identification of crop diseases is of great significance. Recent developments in deep learning, especially convolutional neural network (CNN), have shown impressive performance in plant disease classification. However, most of the existing datasets for plant disease classification are a single background environment rather than a real field environment. In addition, the classification can only obtain the category of a single disease and fail to obtain the location of multiple different diseases, which limits the practical application. Therefore, the object detection method based on CNN can overcome these shortcomings and has broad application prospects. In this study, an annotated apple leaf disease dataset in a real field environment was first constructed to compensate for the lack of existing datasets. Moreover, the Faster R-CNN and YOLOv3 architectures were trained to detect apple leaf diseases in our dataset. Finally, comparative experiments were conducted and a variety of evaluation indicators were analyzed. The experimental results demonstrate that deep learning algorithms represented by YOLOv3 and Faster R-CNN are feasible for plant disease detection and have their own strong points and weaknesses.

First detection and genetic characterization of porcine parvovirus 7 from Korean domestic pig farms

  • Ouh, In-Ohk;Park, Seyeon;Lee, Ju-Yeon;Song, Jae Young;Cho, In-Soo;Kim, Hye-Ryung;Park, Choi-Kyu
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.855-857
    • /
    • 2018
  • Porcine parvovirus 7 (PPV7) was first detected in Korean pig farms in 2017. The detection rate of PPV7 DNA was 24.0% (30/125) in aborted pig fetuses and 74.9% (262/350) in finishing pigs, suggesting that PPV7 has circulated among Korean domestic pig farms. Phylogenetic analysis based on capsid protein amino acid sequences demonstrated that the nine isolated Korean strains (PPV-KA1-3 and PPV-KF1-6) were closely related to the previously reported USA and Chinese PPV7 strains. In addition, the Korean strains exhibit genetic diversity with both insertion and deletion mutations. This study contributes to the understanding of the molecular epidemiology of PPV7 in Korea.

Induced Systemic Resistance and the Rhizosphere Microbiome

  • Bakker, Peter A.H.M.;Doornbos, Rogier F.;Zamioudis, Christos;Berendsen, Roeland L.;Pieterse, Corne M.J.
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.136-143
    • /
    • 2013
  • Microbial communities that are associated with plant roots are highly diverse and harbor tens of thousands of species. This so-called microbiome controls plant health through several mechanisms including the suppression of infectious diseases, which is especially prominent in disease suppressive soils. The mechanisms implicated in disease suppression include competition for nutrients, antibiosis, and induced systemic resistance (ISR). For many biological control agents ISR has been recognized as the mechanism that at least partly explains disease suppression. Implications of ISR on recruitment and functioning of the rhizosphere microbiome are discussed.