• 제목/요약/키워드: plant cells

검색결과 2,852건 처리시간 0.025초

Anti-inflammatory Effects of Abeliophyllum distichum Flower Extract and Associated MAPKs and NF-κB Pathway in Raw264.7 Cells

  • Lee, Jin-Wook;Kang, Yoon-Joong
    • 한국자원식물학회지
    • /
    • 제31권3호
    • /
    • pp.202-210
    • /
    • 2018
  • Abeliophyllum distichum is a medicinal plant used in regional traditional medicine to relieve pain in inflammatory processes. In this study, anti-inflammatory effects of Abeliophyllum distichum flower (ADF) extract were examined. Furthermore, possible molecular mechanisms of the anti-inflammatory effects were dissected. The anti-inflammatory activity was investigated by inhibition of lipopolysaccharide (LPS) induced pro-inflammatory cytokine production in murine macrophage-like cell line Raw264.7 cells. The measurement of the induced pro-inflammatory cytokine levels were carried out by ELISA. The phosphorylation of ERK1/2, JNK, and MAPK, and the nuclear expression of nuclear factor NF-${\kappa}B$ p65 were investigated by Western blot analysis. The extract of ADF significantly decreased the production of pro-inflammatory cytokines. In addition, the extract suppressed the phosphorylation of ERK1/2, JNK, and p38 MAPK, and the nuclear translocation of NF-${\kappa}B$ p65 in activated cells. Our findings provide evidence for the popular use of Abeliophylli distichum in inflammation around Goesan region and also suggest that the flower extract has potential therapeutic benefits against various inflammatory diseases.

솔잎, 돌나물, 톳, 메밀, 깻잎 등 5가지 혼합 열수 추출물의 면역 활성 효과 (Studies on the Effects of Water Extract from Mixture of Pine Needles, Sedum sarmentosum Bunge, Hijkiaorme, Buckwheat and Perlla Leaves on the Immune Function Activation)

  • 류혜숙;김현숙
    • 한국식품영양학회지
    • /
    • 제21권3호
    • /
    • pp.269-274
    • /
    • 2008
  • Plants have long been used as a food source in Korea. In this study, we investigated the combined immunomodulative effects of a water extract mixture of(pine needles, Sedum sarmentosum Bunge, hijkiaorme, buckwheat and Peril a leaves) on Balb/c mice $7{\sim}8$ weeks old. The mice were fed a chow diet ad libitum and the plant extract was orally administered every other day for four weeks at two different concentrations(50 and 500 mg/kg BW). After preparing the single-cell suspension, splenocyte proliferation was determined by the MTT(3-[4,5-di-methylthiazol-2-y]-2,5-diphenyl terazolium bromide) assay. After 48hrs of incubation with the mitogens(ConA or LPS) splenocyte from the mice groups administered 50 and 500 mg/kg BW of the plant extract showed a significant increased in proliferation compared to the control group. A hemolytic plague forming cell assay was used to indicate antibody production against sheep red blood cells(SRBC). The number of antibody-secreting cells T-dependent antigen. The result of this study suggest that supplementation with this plant extract may regulate immune function by increasing splenocyte proliferation and the number of plaque forming cells.

한국 벼 품종 배발생 현탁배양 세포의 초저온 보존과 식물체 재분화 (Plant Regeneration from Cryopreserved Embryogenic Cell Suspension Cultures of Korean Rice (Oryza sativa L.) Cultivars)

  • 김석원;정원중;민성란;배경숙;유장렬
    • 식물조직배양학회지
    • /
    • 제22권2호
    • /
    • pp.115-120
    • /
    • 1995
  • 국내품종인 동진벼와 태백벼의 미숙접합자배 유래 배발생 현탁배양 세포의 초저온 보존 시스템을 개발하였다. 동결/해동 후 캘러스 재생률은 동진벼의 경우 2 M DMSO와 0.4 M sucrose를 태백벼의 경우 0.64 M DMSO와 0.4 M sucrose를 혼용처리하였을 때 캘러스 재생률이 각가 88%와 90%로 가장 높았다. 또한 고농도의 삼투용액에서 배양세포 의 전처리 과정은 필요하지 않았다. 재생된 캘러스를 1 mg/L NAA와 5 mg/L kinetin이 첨가 된 $N_{6 }$, 배지로 이식하여 명배양하였을 때 체세포배발생을 통하여 다수의 유식물체가 발달하였다. 약 100여개의 식물체가 재분화되었으며, 이중 25%는 albino이었다.다.

  • PDF

Cyclamen Exerts Cytotoxicity in Solid Tumor Cell Lines: a Step Toward New Anticancer Agents?

  • Yildiz, Mustafa;Bozcu, Hakan;Tokgun, Onur;Karagur, Ege Riza;Akyurt, Oktay;Akca, Hakan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5911-5913
    • /
    • 2013
  • Cyclamen coum is a traditional medicinal plant in the Turkey. Its anticancer properties and whether cyclamen extract induces any cytotoxicity in solid cancer cell lines have not been thoroughly investigated previously. Therefore we examined cytotoxic effects on cervical cells; HeLa and non small cell lung cancer cell, H1299, lines; Cyclamen extract induced cellular death of both HeLa and H1299 cells in a dose dependent manner. We also analyzed the capacity of cyclamen extract to induce apoptosis by the TUNEL method. Here, for the first time we report that the extract of Cyclamen coum, an endemic plant for Turkey, Bulgaria, Georgia and the Middle East can induce cytotoxicity via apoptosis in HeLa and H1299 cells. These results imply that cyclamen extract can be further analyzed to potentially find novel anticancer compounds.

The Sensor Kinase GacS Negatively Regulates Flagellar Formation and Motility in a Biocontrol Bacterium, Pseudomonas chlororaphis O6

  • Kim, Ji Soo;Kim, Yong Hwan;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • 제30권2호
    • /
    • pp.215-219
    • /
    • 2014
  • The GacS/GacA two component system regulates various traits related to the biocontrol potential of plant-associated pseudomonads. The role of the sensor kinase, GacS, differs between strains in regulation of motility. In this study, we determined how a gacS mutation changed cell morphology and motility in Pseudomonas chlororaphis O6. The gacS mutant cells were elongated in stationary-phase compared to the wild type and the complemented gacS mutant, but cells did not differ in length in logarithmic phase. The gacS mutant had a two-fold increase in the number of flagella compared with the wild type strain; flagella number was restored to that of the wild type in the complemented gacS mutant. The more highly flagellated gacS mutant cells had greater swimming motilities than that of the wild type strain. Enhanced flagella formation in the gacS mutant correlated with increased expression of three genes, fleQ, fliQ and flhF, involved in flagellar formation. Expression of these genes in the complemented gacS mutant was similar to that of the wild type. These findings show that this root-colonizing pseudomonad adjusts flagella formation and cell morphology in stationary-phase using GacS as a major regulator.

Responses of Arabidopsis thaliana to Challenge by Pseudomonas syringae

  • Kim, Min Gab;Kim, Sun Young;Kim, Woe Yeon;Mackey, David;Lee, Sang Yeol
    • Molecules and Cells
    • /
    • 제25권3호
    • /
    • pp.323-331
    • /
    • 2008
  • Plants are continually exposed to a variety of potentially pathogenic microbes, and the interactions between plants and pathogenic invaders determine the outcome, disease or disease resistance. To defend themselves, plants have developed a sophisticated immune system. Unlike animals, however, they do not have specialized immune cells and, thus all plant cells appear to have the innate ability to recognize pathogens and turn on an appropriate defense response. Using genetic, genomic and biochemical methods, tremendous advances have been made in understanding how plants recognize pathogens and mount effective defenses. The primary immune response is induced by microbe-associated molecular patterns (MAMPs). MAMP receptors recognize the presence of probable pathogens and evoke defense. In the co-evolution of plant-microbe interactions, pathogens gained the ability to make and deliver effector proteins to suppress MAMP-induced defense responses. In response to effector proteins, plants acquired R-proteins to directly or indirectly monitor the presence of effector proteins and activate an effective defense response. In this review we will describe and discuss the plant immune responses induced by two types of elicitors, PAMPs and effector proteins.

Anti-inflammatory Effects of Abeliophyllum distichurn Flower Extract

  • Lee, Jin Wook;Kang, Yoon Joong
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.89-89
    • /
    • 2018
  • Abeliophyllum distichum is a medicinal plant used in regional traditional medicine to relieve pain in inflammatory processes. In this study, anti-inflammatory effects of Abeliophyllum distichum stem (ADS) ethyl acetate extract were examined. Furthermore, possible molecular mechanisms of the anti-inflammatory effects were dissected. The anti-inflammatory activity was investigated by inhibition of lipopolysaccharide (LPS) induced pro-inflammatory cytokine production in murine macrophage-like cell line Raw264.7 cells and human microglial cell line BV2 cells. The measurement of the induced pro-inflammatory cytokine levels were carried out by ELISA. The phosphorylation of ERK1/2, JNK, and MAPK, and the nuclear expression of nuclear factor $NF-{\kappa}B$ p65 were investigated by Western blot analysis. The extract of ADS significantly decreased the production of pro-inflammatory cytokines. In addition, the extract suppressed the phosphorylation of ERK1/2, JNK, and p38 MAPK, and the nuclear translocation of $NF-{\kappa}B$ p65 in activated cells. Our findings provide evidence for the popular use of Abeliophylli distichum in inflammation around Goesan region and also suggest that the stem extract has potential therapeutic benefits against several inflammatory diseases.

  • PDF

Anti-Inflammatory Effect of the Extracts from Abeliophyllum distichum Nakai in LPS-Stimulated RAW264.7 Cells

  • Park, Gwang Hun;Park, Jae Ho;Eo, Hyun Ji;Song, Hun Min;Lee, Man Hyo;Lee, Jeong Rak;Jeong, Jin Boo
    • 한국자원식물학회지
    • /
    • 제27권3호
    • /
    • pp.209-214
    • /
    • 2014
  • In this study, we investigated whether A. distichum decreases the production of inflammatory mediators through downregulation of the NF-${\kappa}B$ and ERK pathway. Our data indicated that A. distichum leaf inhibits the overexpression of iNOS in protein and mRNA levels, and subsequently blocked LPS-mediated NO overproduction in RAW264.7 cells. A. distichum leaf inhibited $I{\kappa}B-{\alpha}$ degradation and p65 nuclear translocation, and subsequently suppressed transcriptional activity of NF-${\kappa}B$ in LPS-stimulated RAW264.7 cells. In addition, A. distichum leaf suppressed LPS-induced ERK1/2 activation by decreasing phosphorylation of ERK1/2. These findings suggest that A. distichum leaf shows anti-inflammatory activities through suppressing ERK-mediated NF-${\kappa}B$ activation in mouse macrophage.

Anti-inflammatory Effect of Leaves Extracts from Aralia cordata through Inhibition of NF-κB and MAPKs Signaling in LPS-stimulated RAW264.7 Cells

  • Ji, Eo Hyun;Kim, Da Som;Sim, Su Jin;Park, Gwang Hun;Song, Jeong Ho;Jeong, Jin Boo;Kim, Nahyun
    • 한국자원식물학회지
    • /
    • 제31권6호
    • /
    • pp.634-640
    • /
    • 2018
  • Aralia cordata (A. cordata), which belongs to Araliaceae, is a perennial herb widely distributed in East Asia. We evaluated the anti-inflammatory effect of stems (AC-S), roots (AC-R) and leaves (AC-L) extracted with 100% methanol of A. cordata and elucidated the potential signaling pathway in LPS-stimulated RAW264.7 cells. The AC-L showed a strong anti-inflammatory activity through inhibition of NO production. AC-L dose-dependently inhibited NO production by suppressing iNOS, COX-2 and $IL-{\beta}$ expression in LPS-stimulated RAW264.7 cells. AC-L inhibited the degradation and phosphorylation of $I{\kappa}B-{\alpha}$, which donated to the inhibition of p65 nuclear accumulation and $NF-{\kappa}B$ activation. Furthermore, AC-L suppressed the phosphorylation of ERK1/2 and p38. These results suggested that AC-L may utilize anti-inflammatory activity by blocking $NF-{\kappa}B$ and MAPK signaling pathway and indicated that the AC-L can be used as a natural anti-inflammatory drugs.