Responses of Arabidopsis thaliana to Challenge by Pseudomonas syringae

  • Kim, Min Gab (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Kim, Sun Young (Division of Applied Sciences (Brain Korea 21 Program), Environmental BioTechnology National Core Research Center, Gyeongsang National University) ;
  • Kim, Woe Yeon (Division of Applied Sciences (Brain Korea 21 Program), Environmental BioTechnology National Core Research Center, Gyeongsang National University) ;
  • Mackey, David (Department of Horticulture and Crop Sciences, The Ohio State University) ;
  • Lee, Sang Yeol (Division of Applied Sciences (Brain Korea 21 Program), Environmental BioTechnology National Core Research Center, Gyeongsang National University)
  • Received : 2008.04.18
  • Accepted : 2008.04.20
  • Published : 2008.05.31

Abstract

Plants are continually exposed to a variety of potentially pathogenic microbes, and the interactions between plants and pathogenic invaders determine the outcome, disease or disease resistance. To defend themselves, plants have developed a sophisticated immune system. Unlike animals, however, they do not have specialized immune cells and, thus all plant cells appear to have the innate ability to recognize pathogens and turn on an appropriate defense response. Using genetic, genomic and biochemical methods, tremendous advances have been made in understanding how plants recognize pathogens and mount effective defenses. The primary immune response is induced by microbe-associated molecular patterns (MAMPs). MAMP receptors recognize the presence of probable pathogens and evoke defense. In the co-evolution of plant-microbe interactions, pathogens gained the ability to make and deliver effector proteins to suppress MAMP-induced defense responses. In response to effector proteins, plants acquired R-proteins to directly or indirectly monitor the presence of effector proteins and activate an effective defense response. In this review we will describe and discuss the plant immune responses induced by two types of elicitors, PAMPs and effector proteins.

Keywords

Acknowledgement

Supported by : EB-NCRC

References

  1. Aarts, N., Metz, M., Holub, E., Staskawicz, B.J., Daniels, M.J., and Parker, J.E. (1998). Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R genemediated signaling pathways in Arabidopsis. Proc. Natl. Acad. Sci. USA 95, 10306-10311
  2. Ade, J., DeYoung, B.J., Golstein, C., and Innes, R.W. (2007). Indirect activation of a plant nucleotide binding site-leucinerich repeat protein by a bacterial protease. Proc. Natl. Acad. Sci. USA 104, 2531-2536
  3. Alfano, J.R., and Collmer, A. (2004). Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42, 385-414 https://doi.org/10.1146/annurev.phyto.42.040103.110731
  4. Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez-Gomez, L., Boller, T., Ausubel, F.M., and Sheen, J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977-983 https://doi.org/10.1038/415977a
  5. Ausubel, F.M. (2005). Are innate immune signaling pathways in plants and animals conserved? Nat. Immunol. 6, 973-979 https://doi.org/10.1038/ni1253
  6. Axtell, M.J., and Staskawicz, B.J. (2003). Initiation of RPS2- specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112, 369-377 https://doi.org/10.1016/S0092-8674(03)00036-9
  7. Belkhadir, Y., Nimchuk, Z., Hubert, D.A., Mackey, D., and Dangl, J.L. (2004). Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. Plant Cell 16, 2822-2835 https://doi.org/10.1105/tpc.104.024117
  8. Bent, A.F., Kunkel, B.N., Dahlbeck, D., Brown, K.L., Schmidt, R., Giraudat, J., Leung, J., and Staskawicz, B.J. (1994). RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265, 1856-1860 https://doi.org/10.1126/science.8091210
  9. Bisgrove, S.R., Simonich, M.T., Smith, N.M., Sattler, A., and Innes, R.W. (1994). A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell 6, 927-933 https://doi.org/10.1105/tpc.6.7.927
  10. Boyes, D.C., Nam, J., and Dangl, J.L. (1998). The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc. Natl. Acad. Sci. USA 95, 15849-15854
  11. Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., and Dong, X. (1997). The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57-63 https://doi.org/10.1016/S0092-8674(00)81858-9
  12. Cao, H., Li, X., and Dong, X. (1998). Generation of broadspectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc. Natl. Acad. Sci. USA 95, 6531-6536
  13. Century, K.S., Holub, E.B., and Staskawicz, B.J. (1995). NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proc. Natl. Acad. Sci. USA 92, 6597-6601
  14. Century, K.S., Shapiro, A.D., Repetti, P.P., Dahlbeck, D., Holub, E., and Staskawicz, B.J. (1997). NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278, 1963-1965 https://doi.org/10.1126/science.278.5345.1963
  15. Chern, M.S., Fitzgerald, H.A., Yadav, R.C., Canlas, P.E., Dong, X., and Ronald, P.C. (2001). Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J. 27, 101-113 https://doi.org/10.1046/j.1365-313x.2001.01070.x
  16. Chinchilla, D., Bauer, Z., Regenass, M., Boller, T., and Felix, G. (2006). The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18, 465-476 https://doi.org/10.1105/tpc.105.036574
  17. Chisholm, S.T., Coaker, G., Day, B., and Staskawicz, B.J. (2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803-814 https://doi.org/10.1016/j.cell.2006.02.008
  18. Coppinger, P., Repetti, P.P., Day, B., Dahlbeck, D., Mehlert, A., and Staskawicz, B.J. (2004). Overexpression of the plasma membrane-localized NDR1 protein results in enhanced bacterial disease resistance in Arabidopsis thaliana. Plant J. 40, 225-237 https://doi.org/10.1111/j.1365-313X.2004.02203.x
  19. Cuppels, D.A. (1986). Generation and characterization of Tn5 insertion mutations in Pseudomonas syringae pv. tomato. Appl. Environ. Microbiol. 51, 323-327
  20. da Cunha, L., Sreerekha, M.V., and Mackey, D. (2007). Defense suppression by virulence effectors of bacterial phytopathogens. Curr. Opin. Plant Biol. 10, 349-357 https://doi.org/10.1016/j.pbi.2007.04.018
  21. Dangl, J.L., and Jones, J.D. (2001). Plant pathogens and integrated defence responses to infection. Nature 411, 826-833 https://doi.org/10.1038/35081161
  22. Dangl, J.L., Ritter, C., Gibbon, M.J., Mur, L.A., Wood, J.R., Goss, S., Mansfield, J., Taylor, J.D., and Vivian, A. (1992). Functional homologs of the Arabidopsis RPM1 disease resistance gene in bean and pea. Plant Cell 4, 1359-1369 https://doi.org/10.1105/tpc.4.11.1359
  23. Deslandes, L., Olivier, J., Peeters, N., Feng, D.X., Khounlotham, M., Boucher, C., Somssich, I., Genin, S., and Marco, Y. (2003). Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc. Natl. Acad. Sci. USA 100, 8024-8029
  24. Despres, C., DeLong, C., Glaze, S., Liu, E., and Fobert, P.R. (2000). The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12, 279-290 https://doi.org/10.1105/tpc.12.2.279
  25. Despres, C., Chubak, C., Rochon, A., Clark, R., Bethune, T., Desveaux, D., and Fobert, P.R. (2003). The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15, 2181-2191 https://doi.org/10.1105/tpc.012849
  26. Dodds, P.N., Lawrence, G.J., Catanzariti, A.M., Teh, T., Wang, C.I., Ayliffe, M.A., Kobe, B., and Ellis, J.G. (2006). From the cover: direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc. Natl. Acad. Sci. USA 103, 8888-8893
  27. Eckardt, N.A., and Innes, R. (2003). Resistance rodeo: rounding up the full complement of Arabidopsis NBS-LRR genes. Plant Cell 15, 806-807 https://doi.org/10.1105/tpc.150470
  28. Felix, G., and Boller, T. (2003). Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J. Biol. Chem. 278, 6201-6208 https://doi.org/10.1074/jbc.M209880200
  29. Felix, G., Duran, J.D., Volko, S., and Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265-276 https://doi.org/10.1046/j.1365-313X.1999.00265.x
  30. Feys, B.J., Moisan, L.J., Newman, M.A., and Parker, J.E. (2001). Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J. 20, 5400-5411 https://doi.org/10.1093/emboj/20.19.5400
  31. Feys, B.J., Wiermer, M., Bhat, R.A., Moisan, L.J., Medina- Escobar, N., Neu, C., Cabral, A., and Parker, J.E. (2005). Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell 17, 2601-2613 https://doi.org/10.1105/tpc.105.033910
  32. Gassmann, W., Hinsch, M.E., and Staskawicz, B.J. (1999). The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant J. 20, 265-277 https://doi.org/10.1046/j.1365-313X.1999.t01-1-00600.x
  33. Gomez-Gomez, L., and Boller, T. (2000). FLS2: an LRR receptor- like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5, 1003-1011 https://doi.org/10.1016/S1097-2765(00)80265-8
  34. Gomez-Gomez, L., Felix, G., and Boller, T. (1999). A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J. 18, 277-284 https://doi.org/10.1046/j.1365-313X.1999.00451.x
  35. Ham, J.H., Kim, M.G., Lee, S.Y., and Mackey, D. (2007). Layered basal defenses underlie non-host resistance of Arabidopsis to Pseudomonas syringae pv. phaseolicola. Plant J. 51, 604-616 https://doi.org/10.1111/j.1365-313X.2007.03165.x
  36. Hammond-Kosack, K.E., and Jones, J.D. (1997). Plant disease resistance genes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 575-607 https://doi.org/10.1146/annurev.arplant.48.1.575
  37. Hammond-Kosack, K.E., and Parker, J.E. (2003). Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr. Opin. Biotechnol. 14, 177-193 https://doi.org/10.1016/S0958-1669(03)00035-1
  38. He, P., Shan, L., Lin, N.C., Martin, G.B., Kemmerling, B., Nurnberger, T., and Sheen, J. (2006). Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity. Cell 125, 563-575 https://doi.org/10.1016/j.cell.2006.02.047
  39. Heath, M.C. (2000). Hypersensitive response-related death. Plant Mol. Biol. 44, 321-334 https://doi.org/10.1023/A:1026592509060
  40. Hinsch, M., and Staskawicz, B. (1996). Identification of a new Arabidopsis disease resistance locus, RPs4, and cloning of the corresponding avirulence gene, avrRps4, from Pseudomonas syringae pv. pisi. Mol. Plant Microbe. Interact. 9, 55-61 https://doi.org/10.1094/MPMI-9-0055
  41. Hirano, S.S., and Upper, C.D. (2000). Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte. Microbiol. Mol. Biol. Rev. 64, 624-653 https://doi.org/10.1128/MMBR.64.3.624-653.2000
  42. Holt, B.F., 3rd, Mackey, D., and Dangl, J.L. (2000). Recognition of pathogens by plants. Curr. Biol. 10, R5-7 https://doi.org/10.1016/S0960-9822(99)00273-0
  43. Holt, B.F., 3rd, Belkhadir, Y., and Dangl, J.L. (2005). Antagonistic control of disease resistance protein stability in the plant immune system. Science 309, 929-932 https://doi.org/10.1126/science.1109977
  44. Jia, Y., McAdams, S.A., Bryan, G.T., Hershey, H.P., and Valent, B. (2000). Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 19, 4004-4014 https://doi.org/10.1093/emboj/19.15.4004
  45. Johnson, C., Boden, E., and Arias, J. (2003). Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell 15, 1846-1858 https://doi.org/10.1105/tpc.012211
  46. Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329 https://doi.org/10.1038/nature05286
  47. Keshavarzi, M., Soylu, S., Brown, I., Bonas, U., Nicole, M., Rossiter, J., and Mansfield, J. (2004). Basal defenses induced in pepper by lipopolysaccharides are suppressed by Xanthomonas campestris pv. vesicatoria. Mol. Plant Microbe. Interact. 17, 805-815 https://doi.org/10.1094/MPMI.2004.17.7.805
  48. Kim, H.S., and Delaney, T.P. (2002). Over-expression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsis thaliana to Peronospora parasitica. Plant J. 32, 151-163 https://doi.org/10.1046/j.1365-313X.2001.01411.x
  49. Kim, C.Y., and Zhang, S. (2004). Activation of a mitogenactivated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco. Plant J. 38, 142-151 https://doi.org/10.1111/j.1365-313X.2004.02033.x
  50. Kim, M.G., da Cunha, L., McFall, A.J., Belkhadir, Y., DebRoy, S., Dangl, J.L., and Mackey, D. (2005). Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121, 749-759 https://doi.org/10.1016/j.cell.2005.03.025
  51. Kinkema, M., Fan, W., and Dong, X. (2000). Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12, 2339-2350 https://doi.org/10.1105/tpc.12.12.2339
  52. Kobe, B., and Kajava, A.V. (2001). The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. 11, 725-732 https://doi.org/10.1016/S0959-440X(01)00266-4
  53. Kruger, J., Thomas, C.M., Golstein, C., Dixon, M.S., Smoker, M., Tang, S., Mulder, L., and Jones, J.D. (2002). A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296, 744-747 https://doi.org/10.1126/science.1069288
  54. Kunkel, B.N., Bent, A.F., Dahlbeck, D., Innes, R.W., and Staskawicz, B.J. (1993). RPS2, an Arabidopsis disease resistance Locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Plant Cell 5, 865-875
  55. Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T., and Felix, G. (2004). The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16, 3496-3507 https://doi.org/10.1105/tpc.104.026765
  56. Lawton, K.A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., Staub, T., and Ryals, J. (1996). Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 10, 71-82 https://doi.org/10.1046/j.1365-313X.1996.10010071.x
  57. Liu, Y., Burch-Smith, T., Schiff, M., Feng, S., and Dinesh-Kumar, S.P. (2004). Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J. Biol. Chem. 279, 2101-2108 https://doi.org/10.1074/jbc.M310029200
  58. Mackey, D., Holt, B.F., 3rd, Wiig, A., and Dangl, J.L. (2002). RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108, 743-754 https://doi.org/10.1016/S0092-8674(02)00661-X
  59. Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R., and Dangl, J.L. (2003). Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112, 379-389 https://doi.org/10.1016/S0092-8674(03)00040-0
  60. Mauch, F., Mauch-Mani, B., Gaille, C., Kull, B., Haas, D., and Reimmann, C. (2001). Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. Plant J. 25, 67-77 https://doi.org/10.1046/j.1365-313x.2001.00940.x
  61. Melotto, M., Underwood, W., Koczan, J., Nomura, K., and He, S.Y. (2006). Plant stomata function in innate immunity against bacterial invasion. Cell 126, 969-980 https://doi.org/10.1016/j.cell.2006.06.054
  62. Meyers, B.C., Kozik, A., Griego, A., Kuang, H., and Michelmore, R.W. (2003). Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15, 809-834 https://doi.org/10.1105/tpc.009308
  63. Mou, Z., Fan, W., and Dong, X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113, 935-944 https://doi.org/10.1016/S0092-8674(03)00429-X
  64. Muskett, P.R., Kahn, K., Austin, M.J., Moisan, L.J., Sadanandom, A., Shirasu, K., Jones, J.D., and Parker, J.E. (2002). Arabidopsis RAR1 exerts rate-limiting control of R gene-mediated defenses against multiple pathogens. Plant Cell 14, 979-992 https://doi.org/10.1105/tpc.001040
  65. Nawrath, C., and Metraux, J.P. (1999). Salicylic acid inductiondeficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11, 1393-1404 https://doi.org/10.1105/tpc.11.8.1393
  66. Newman, M.A., von Roepenack-Lahaye, E., Parr, A., Daniels, M.J., and Dow, J.M. (2002). Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria. Plant J. 29, 487-495 https://doi.org/10.1046/j.0960-7412.2001.00233.x
  67. Nimchuk, Z., Marois, E., Kjemtrup, S., Leister, R.T., Katagiri, F., and Dangl, J.L. (2000). Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type III effector proteins from Pseudomonas syringae. Cell 101, 353-363 https://doi.org/10.1016/S0092-8674(00)80846-6
  68. Nuhse, T.S., Peck, S.C., Hirt, H., and Boller, T. (2000). Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6. J. Biol. Chem. 275, 7521-7526 https://doi.org/10.1074/jbc.275.11.7521
  69. Nurnberger, T., and Brunner, F. (2002). Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr. Opin. Plant. Biol. 5, 318-324 https://doi.org/10.1016/S1369-5266(02)00265-0
  70. Nurnberger, T., Brunner, F., Kemmerling, B., and Piater, L. (2004). Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198, 249-266 https://doi.org/10.1111/j.0105-2896.2004.0119.x
  71. O'Donnell, P.J., Schmelz, E.A., Moussatche, P., Lund, S.T., Jones, J.B. and Klee, H.J. (2003). Susceptible to intolerance--a range of hormonal actions in a susceptible Arabidopsis pathogen response. Plant J. 33, 245-257 https://doi.org/10.1046/j.1365-313X.2003.01619.x
  72. Rooney, H.C., Van't Klooster, J.W., van der Hoorn, R.A., Joosten, M.H., Jones, J.D., and de Wit, P.J. (2005). Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308, 1783-1786 https://doi.org/10.1126/science.1111404
  73. Scofield, S.R., Tobias, C.M., Rathjen, J.P., Chang, J.H., Lavelle, D.T., Michelmore, R.W., and Staskawicz, B.J. (1996). Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274, 2063-2065 https://doi.org/10.1126/science.274.5295.2063
  74. Serino, L., Reimmann, C., Baur, H., Beyeler, M., Visca, P., and Haas, D. (1995). Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Mol. Gen. Genet. 249, 217-228 https://doi.org/10.1007/BF00290369
  75. Shah, J. (2003). The salicylic acid loop in plant defense. Curr. Opin. Plant Biol. 6, 365-371 https://doi.org/10.1016/S1369-5266(03)00058-X
  76. Shah, J., Tsui, F., and Klessig, D.F. (1997). Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol. Plant Microbe. Interact. 10, 69-78 https://doi.org/10.1094/MPMI.1997.10.1.69
  77. Shao, F., Golstein, C., Ade, J., Stoutemyer, M., Dixon, J.E., and Innes, R.W. (2003). Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301, 1230-1233 https://doi.org/10.1126/science.1085671
  78. Shirasu, K., and Schulze-Lefert, P. (2003). Complex formation, promiscuity and multi-functionality: protein interactions in disease-resistance pathways. Trends Plant Sci. 8, 252-258 https://doi.org/10.1016/S1360-1385(03)00104-3
  79. Silipo, A., Molinaro, A., Sturiale, L., Dow, J.M., Erbs, G., Lanzetta, R., Newman, M.A., and Parrilli, M. (2005). The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris. J. Biol. Chem. 280, 33660-33668 https://doi.org/10.1074/jbc.M506254200
  80. Simonich, M.T., and Innes, R.W. (1995). A disease resistance gene in Arabidopsis with specificity for the avrPph3 gene of Pseudomonas syringae pv. phaseolicola. Mol. Plant Microbe Interact. 8, 637-640 https://doi.org/10.1094/MPMI-8-0637
  81. Takken, F.L., Albrecht, M., and Tameling, W.I. (2006). Resistance proteins: molecular switches of plant defence. Curr. Opin. Plant Biol. 9, 383-390 https://doi.org/10.1016/j.pbi.2006.05.009
  82. Tameling, W.I., Elzinga, S.D., Darmin, P.S., Vossen, J.H., Takken, F.L., Haring, M.A., and Cornelissen, B.J. (2002). The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14, 2929-2939 https://doi.org/10.1105/tpc.005793
  83. Tameling, W.I., Vossen, J.H., Albrecht, M., Lengauer, T., Berden, J.A., Haring, M.A., Cornelissen, B.J., and Takken, F.L. (2006). Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation. Plant Physiol. 140, 1233-1245 https://doi.org/10.1104/pp.105.073510
  84. Tang, X., Frederick, R.D., Zhou, J., Halterman, D.A., Jia, Y., and Martin, G.B. (1996) Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274, 2060-2063 https://doi.org/10.1126/science.274.5295.2060
  85. Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H.S., Han, B., Zhu, T., Zou, G., and Katagiri, F. (2003). Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15, 317-330 https://doi.org/10.1105/tpc.007591
  86. Tornero, P., Merritt, P., Sadanandom, A., Shirasu, K., Innes, R.W., and Dangl, J.L. (2002). RAR1 and NDR1 contribute quantitatively to disease resistance in Arabidopsis, and their relative contributions are dependent on the R gene assayed. Plant Cell 14, 1005-1015 https://doi.org/10.1105/tpc.001032
  87. Verberne, M.C., Verpoorte, R., Bol, J.F., Mercado-Blanco, J., and Linthorst, H.J. (2000). Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nat. Biotechnol. 18, 779-783 https://doi.org/10.1038/77347
  88. Warren, R.F., Merritt, P.M., Holub, E., and Innes, R.W. (1999). Identification of three putative signal transduction genes involved in R gene-specified disease resistance in Arabidopsis. Genetics 152, 401-412
  89. Whalen, M.C., Innes, R.W., Bent, A.F., and Staskawicz, B.J. (1991). Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3, 49-59 https://doi.org/10.1105/tpc.3.1.49
  90. Wiermer, M., Feys, B.J., and Parker, J.E. (2005). Plant immunity: the EDS1 regulatory node. Curr. Opin. Plant Biol. 8, 383-389 https://doi.org/10.1016/j.pbi.2005.05.010
  91. Wildermuth, M.C., Dewdney, J., Wu, G., and Ausubel, F.M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414, 562-565 https://doi.org/10.1038/35107108
  92. Yang, Y., Shah, J., and Klessig, D.F. (1997). Signal perception and transduction in plant defense responses. Genes Dev. 11, 1621-1639 https://doi.org/10.1101/gad.11.13.1621
  93. Yu, G.L., Katagiri, F., and Ausubel, F.M. (1993). Arabidopsis mutations at the RPS2 locus result in loss of resistance to Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Mol. Plant Microbe Interact. 6, 434-443 https://doi.org/10.1094/MPMI-6-434
  94. Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., Hutzler, P., and Durner, J. (2004). Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc. Natl. Acad. Sci. USA 101, 15811-15816
  95. Zhang, S., and Klessig, D.F. (2001). MAPK cascades in plant defense signaling. Trends Plant Sci. 6, 520-527 https://doi.org/10.1016/S1360-1385(01)02103-3
  96. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., and Boller, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764-767 https://doi.org/10.1038/nature02485
  97. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D., Boller, T., and Felix, G. (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts agrobacteriummediated transformation. Cell 125, 749-760 https://doi.org/10.1016/j.cell.2006.03.037