• Title/Summary/Keyword: plane stress/strain

Search Result 444, Processing Time 0.028 seconds

Analysis of Welding Residual Stress Redistributions on Notched Multi-pass FCA Butt Weldment (노치가공에 의한 다층 FCA 용접부의 잔류응력 재분포 특성)

  • Bang, Hee-Seon;Bang, Han-Sur;Oh, Ik-Hyun;Kim, Jun-Hyung
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.86-91
    • /
    • 2010
  • In the present study, two-dimensional plane deformation thermo elasto-plastic analysis has been carried out, in order to investigate the thermal and mechanical behaviour (residual stress, plastic strain, magnitude of stress and their distribution and production mechanism) on multi-pass FCA butt weldment of high strength EH36-TMCP ultra thick plate. Moreover, this study can be considered as a basis for analysing the fracture toughness, KIC, and its effect on welding residual stress redistribution with notch on multi-pass FCA butt weldment, in future. The results of welding residual stress obtained from thermo elasto-plastic analysis has been compared and verified with the results measured by XRD.

An Experimental Study on Shear Strength of Saturated Sand (포화사(飽和砂)의 전단강도(剪斷强度)에 관한 실험적(實驗的) 연구(硏究))

  • Lee, Hyoung Soo;Park, Young Dae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.107-113
    • /
    • 1989
  • The purpose of this study is to compare the results of shear-deformation of saturated sand under the 3 dimensional stress with the results of simple torque-shear test already reported, Japaness standard sand, Toyoura sand, was chosen as test sample and the equipments of the department of soil mechancis laboratory of Nihon University were used. The conclusions obtained are as follows. 1). The friction angle of sand (${\phi}$) is proportional to the density regardless of the condition of stress-strain. This is because of the reason that the lower the cell pressure becomes, the larger the volume changes in case of the same density. 2). The value of ${\varphi}$ are variable according to the condition of stress-strain in the same density, and ${\phi}_dTS$ is larger than ${\phi}_dPS$ and ${\phi}_dTC$ when cell pressure is low. 3). ${\phi}_dPS$ is larger then ${\phi}_dTS$, under the same denstiy and same cell pressure. Thus the shear strength of sand is decided according to the condition of stress-strain 4). the relationship between the stress ratio (q/p) and strain increment ration in the plane strain test is linear regardless of the density and the cell pressure of the test sample.

  • PDF

Investigation of Strain Field on a Misfit Dislocation in a Strained Si Layer Using the CFTM Method (CFTM 방법을 이용한 Si 박막과 격자불일치 전위결함의 변형률 분포에 대한 고찰)

  • Chang, Wonjae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.757-761
    • /
    • 2017
  • The computational fourier-transform moire (CFTM) method has been briefly explained and this method was used to perform strain analysis of a misfit dislocation in a strained $Si/Si_{0.55}Ge_{0.45}$ layer. An essential advantage of the CFTM method is that it does not require unwrapping, such that errors due to improper unwrapping can be excluded. The analysis results revealed that the Si layer was grown with tensile stress on $Si_{0.55}Ge_{0.45}$ and lattice constant of the Si layer along the growth direction was 1.9% smaller than that of $Si_{0.55}Ge_{0.45}$. On the other hand, strain of the misfit dislocation in the strained $Si/Si_{0.55}Ge_{0.45}$ layer was maximum at the dislocation core due to an extra half-plane and the $e_{xx}$ and $e_{yy}$ values were positive and negative, respectively, along the direction of a burgers vector.

High Temperature Deformation Behavior of Ti-Al Intermetallic Compound and Orientation Distribution of Lamellae Structure (Ti-Al금속간화합물의고온변형거동및라멜라조직의결정방위분포)

  • Park Kyu-Seop;Kang Chang-Yong;Lee Keun-Jin;Chung Han-Shik;Jung Young-Guan;Fukutomi Hiroshi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.162-169
    • /
    • 2004
  • High temperature uniaxial compression tests in the alpha single phase region were carried out on the Ti -43mo1%Al intermetallic compound, in order to obtain oriented lamellar microstructure. The compression deformation temperatures and strain rates are from 1573k to 1623k and 1.0x10$^{-4}$ s to 5.0x10$^{-3}$ s, respectively. Fully lamellar microstructure was observed after the uniaxial compression deformation in a single phase region followed by cooling to room temperature. Lamellar colony diameter depended on strain rates and test temperatures. The diameter varied between 8601m and 300fm. Stress-strain curve showed a work softening and the size of lamellar colony diameter varied depending on peak stresses. This shows the occurrence of dynamic recrystallization. Texture measurements after the uniaxial compression deformation, showed the development of fiber during dynamic recrystallization. It is seen that the area for the maximum pole density existed in 35 degrees away from the compression plane. The texture sharpens with a decrease in strain rate

Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer

  • Chen, Shao J.;Yin, Da W.;Jiang, N.;Wang, F.;Guo, Wei J.
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.333-342
    • /
    • 2019
  • Geological dynamic hazards during coal mining can be caused by the failure of a composite system consisting of roof rock and coal layers, subject to different loading rates due to different advancing velocities in the working face. In this paper, the uniaxial compression test simulations on the composite rock-coal layers were performed using $PFC^{2D}$ software and especially the effects of loading rate on the stress-strain behavior, strength characteristics and crack nucleation, propagation and coalescence in a composite layer were analyzed. In addition, considering the composite layer, the mechanisms for the advanced bore decompression in coal to prevent the geological dynamic hazards at a rapid advancing velocity of working face were explored. The uniaxial compressive strength and peak strain are found to increase with the increase of loading rate. After post-peak point, the stress-strain curve shows a steep stepped drop at a low loading rate, while the stress-strain curve exhibits a slowly progressive decrease at a high loading rate. The cracking mainly occurs within coal, and no apparent cracking is observed for rock. While at a high loading rate, the rock near the bedding plane is damaged by rapid crack propagation in coal. The cracking pattern is not a single shear zone, but exhibits as two simultaneously propagating shear zones in a "X" shape. Following this, the coal breaks into many pieces and the fragment size and number increase with loading rate. Whereas a low loading rate promotes the development of tensile crack, the failure pattern shows a V-shaped hybrid shear and tensile failure. The shear failure becomes dominant with an increasing loading rate. Meanwhile, with the increase of loading rate, the width of the main shear failure zone increases. Moreover, the advanced bore decompression changes the physical property and energy accumulation conditions of the composite layer, which increases the strain energy dissipation, and the occurrence possibility of geological dynamic hazards is reduced at a rapid advancing velocity of working face.

FEM Analysis of Turning Multi-layer Metal (다중 적층 금속의 선삭가공에 대한 FEM 해석)

  • Kim, Key-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.57-63
    • /
    • 2011
  • The aim of this study is to analyze turning process using commercial FEM simulation code. Various simulation models of orthogonal cutting process for 3 layers of metallic material have been simulated and analyzed. The workpiece material used for the orthogonal plane-strain metal cutting simulation consists of three layers, which are Allow Tool Steel, Aluminum and Stainless Steel. The finite element model is composed of a deformable workpiece and a rigid tool. The tool penetrates through the workpiece at a constant speed and constant feed rate. As an analytical result, detailed cutting temperature, strain, pressure, residual stress for both a tool and each layer of workpiece were obtained during the turning process. It has been closely observed that the chip flow curve deforms continuously.

Behavior of Punch Deformation in Precision Shearing Process Using Press Die (금형을 이용한 정밀전단가공에서 펀치의 변형거동)

  • Jeong, Jun-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.62-69
    • /
    • 2000
  • Uneven clearances in the left and right sides of a press die cause deformation of the punch in precision shearing process. This deformation results from the compression stress and bending moment from shearing force in vertical direction and from the side force in horizontal direction acting to the punch, In this study the behavior of punch deformation is investigated in order to clarify the deformation state of the punch by using strain gauge deformation to shearing force side force bending moment radius of curvature and shear plane of the punch. Also we presented the calculation method of deformation size for the punch.

  • PDF

CAE based risk prediction for sharp edge improvement (샤프엣지 개선을 위한 해석적 리스크 검토법)

  • Nam, Byeung Gun;Park, Shin Hee;Kim, Hyun Sup
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.36-42
    • /
    • 2014
  • In order to prevent the sharp edge during the side impact, a cause analysis and CAE based risk prediction were carried out in this study. It was found that sharp edge occurs mainly because of stiffness difference between the major parts and structural stress concentration. It could be improved by directly reinforcing the crack initiation region or by weakening the joints connecting the parts. The fracture criterion based on major in-plain strain was suggested and the risk prediction process for sharp edge prevention was established.

Shear Strength and Design of HPFRCCs Coupling Beam with Diagonal Reinforcement (대각 보강된 HPFRCCs 커플링 보의 전단강도 및 설계)

  • Park, Wan-Shin;Yun, Hyun-Do;Kim, Sun-Woo;Jean, Esther;Kim, Young-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.257-260
    • /
    • 2006
  • Coupled shear walls consist of two or more in-plane walls inter-connected with coupling beams. In order to effectively resist seismic loads, coupling beams must be sufficiently stiff, strong and posses a stable load-deflection hysteretic response. Much of requirements to the civil and building structures have recently been changed in accordance with the social and economic progress. Ductility of high performance fiber reinforced cementitious composites(HPFRCCs), which exhibit strain hardening and multiple crackling characteristics under the uniaxial tensile stress is drastically improved. This paper provides background for design guidelines that include a design model to calculate the shear strength of pseudo strain hardening cementitious composite steel coupling beam.

  • PDF

Prediction of Stress-Strain Relation and Evolution of Compliance of Concrete by a Micromechanical Model (미세역학이론에 의한 콘크리트의 응력-변형도 관계와 연성도의 예측에 관한 연구)

  • 김진구
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.147-155
    • /
    • 1996
  • In this study a model for the constitutive relation of a plane concrete is proposed using a micromechariical model. In this model a precursor crack is assumed to exist in the aggregate-cement paste interface, and the LEFM is used to predict the nucleation of the bond cracks and the grow th of mortar cracks. For computational convenience the bond crack-mortar crack configuration is transformed into a straight crack with a point force in the middle. 'The overall compliance and the cons,titutive relation are predicted from the damage due to microcracks, and the predicted stress-strain curves are compared with some experimental data. According to the results, the model predictions are better for under tensile loading than under compression, for high, strength concrete than for normal strength concrete.