DOI QR코드

DOI QR Code

Investigation of Strain Field on a Misfit Dislocation in a Strained Si Layer Using the CFTM Method

CFTM 방법을 이용한 Si 박막과 격자불일치 전위결함의 변형률 분포에 대한 고찰

  • Chang, Wonjae (Department of Electrical and Computer Engineering, Michigan State University)
  • 장원재 (미시건주립대학교 전자공학과)
  • Received : 2017.09.10
  • Accepted : 2017.10.14
  • Published : 2017.12.01

Abstract

The computational fourier-transform moire (CFTM) method has been briefly explained and this method was used to perform strain analysis of a misfit dislocation in a strained $Si/Si_{0.55}Ge_{0.45}$ layer. An essential advantage of the CFTM method is that it does not require unwrapping, such that errors due to improper unwrapping can be excluded. The analysis results revealed that the Si layer was grown with tensile stress on $Si_{0.55}Ge_{0.45}$ and lattice constant of the Si layer along the growth direction was 1.9% smaller than that of $Si_{0.55}Ge_{0.45}$. On the other hand, strain of the misfit dislocation in the strained $Si/Si_{0.55}Ge_{0.45}$ layer was maximum at the dislocation core due to an extra half-plane and the $e_{xx}$ and $e_{yy}$ values were positive and negative, respectively, along the direction of a burgers vector.

Keywords

References

  1. F. Hue, M. Hytch, H. Bender, F. Houdellier, and A. Claverie, Phys. Rev. Lett., 100, 156602 (2008). [DOI: https://doi.org/10.1103/PhysRevLett.100.156602]
  2. M. J. Hytch, E. Snoeck, and R. Kilaas, Ultramicroscopy, 74, 131 (1998). [DOI: https://doi.org/10.1016/S0304-3991(98)00035-7]
  3. M. J. Hytch, J. L. Putaux, and J. M. Penisson, Nature, 423, 270 (2003). [DOI: https://doi.org/10.1038/nature01638]
  4. G. Ade and R. Lauer, Ultramicroscopy, 77, 177 (1999). [DOI: https://doi.org/10.1016/S0304-3991(99)00037-6]
  5. S. L. Sahonta, G. P. Dimitrakopulos, Th. Kehagias, J. Kioseoglou, A. Adikimenakis, E. Iliopoulos, A. Georgakilas, H. Kirmse, W. Neumann, and Ph. Komninou, Appl. Phys. Lett., 95, 021913 (2009). [DOI: https://doi.org/10.1063/1.3184593]
  6. G. Ade, Microelectron. Eng., 51, 3 (2000). [DOI: https://doi.org/10.1016/S0167-9317(99)00454-2]
  7. E. Guerrero, P. Galindo, A. Yanez, T. Ben, and S. I. Molina, Microsc. Microanal., 13, 320 (2007). [DOI: https://doi.org/10.1017/S1431927607070407]
  8. A. Delimitis, Ph. Komninou, G. P. Dimitrakopulos, Th. Kehagias, J. Kioseoglou, and Th. Karakostas, Appl. Phys. Lett., 90, 061920 (2007). [DOI: https://doi.org/10.1063/1.2470496]
  9. M. J. Hytch, Microsc. Microanal. Microstruct., 8, 41 (1997). [DOI: https://doi.org/10.1051/mmm:1997105]
  10. W. Chang and T. D. Brown, Micron, 42, 392 (2011). [DOI: https://doi.org/10.1016/j.micron.2010.11.002]
  11. A. K. Singh, J. Tiwari, A. Yadav, and R. K. Jha, J. Energy, 2014, 1 (2014). [DOI: https://doi.org/10.1155/2014/946406]
  12. M. K. Das and S. K. Choudhary, Appl. Phys. A, 112, 543 (2013). [DOI: https://doi.org/10.1007/s00339-013-7761-9]