• Title/Summary/Keyword: plane fitting

Search Result 105, Processing Time 0.029 seconds

Curve-fitting in complex plane by a stable rational function (복소수 평면에서 안정한 유리함수에 의한 curve-fitting)

  • 최종호;황진권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.119-122
    • /
    • 1986
  • An algorithm is proposed to find a stable rational function, which is frequently used in the linear system theory, by curve-fitting a given data. This problem is essentially a nonolinear optimization problem. In order to converge faster to the solution, the following method is used. First, the coefficients of the denominator polynomial are fixed and only the coefficients of the numerator polynomial are adjusted by its linear relationships. Then the coefficients of the numerator are fixed and the coefficients of the denominator polynomial are adjusted by nonlinear programming. This whole process is repeated until a convergent solution is found. The solution obtained by this method converges better than by other algorithms and its versatility is demonstrated by applying it to the design of a feedback control system and a low pass filter.

  • PDF

An Efficient Approach to Circular Curve Fitting of Articulated Manipulators Using Least Squares (최소자승법을 이용한 수직다관절 Manipulator의 원호보간에 관한 효과적인 방법)

  • 김대영;최은재;정원지;서영교;홍형표
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.570-575
    • /
    • 2002
  • This paper presents a new circular curve fitting approach of articulated manipulators, based on pseudoinverses. The paper aims at gaining the interpolation of circle from n data points, under the condition that the fitted circle should pass both a start point and an end point. In this paper, two algorithms of circular interpolation are presented. Prior to circular interpolation, are a spherical fitting should be performed, using least squares. In the first algorithm, the relationship between point data and normal vector on the sphere is used. In the second algorithm. the equation of plane which can be obtained from 3 points, i.e., a start point, an end point, and center of a sphere. The proposed algorithms are show to be efficient by using MATLAB-based simulation.

  • PDF

Unveiling the Properties of FLS 1718+59: A Galaxy-Galaxy Gravitational Lens System

  • Taak, Yoon Chan;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.36.2-36.2
    • /
    • 2014
  • We present results of the analysis of FLS 1718+59, a galaxy-galaxy gravitational lens system in the Spitzer First Look Survey (FLS) Field. A background galaxy (z = 0.245) is severely distorted by an elliptical galaxy (z = 0.08), by gravitational lensing. We analyze this system by several methods, including Ellipse and Galfit fitting, gravitational lens modeling (gravlens), and SED fitting. Properties of the lens galaxy can be obtained: from Galfit we measure the effective radius and the average surface brightness inside it, and from gravlens we estimate the total mass inside the Einstein radius (lensing mass). We use these parameters to check that the lens galaxy is located on the Fundamental Plane. Also, we conduct SED fitting for the lens galaxy and estimate the stellar mass, and compare this with the lensing mass of the lens galaxy to check the M-L relation.

  • PDF

Development of 2D Tight-fitting Collar Pattern from 3D Scan Data of Various Types of Men's Dressform (남성 체형별 인대의 3차원 형상 데이터와 칼라 패턴 개발)

  • Jeong Yeon-Hee;Kim So-Young;Hong Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.5 s.153
    • /
    • pp.722-732
    • /
    • 2006
  • The pattern making of the tight-fitting collars which often used in diving suits, dance wear, or cycle wear has not been fully established. To develop tight-fitting collar pattern directly from 3D images from the representative somatotypes, dressforms developed by Jaeun Jung were used. The 3D scan data of the four male dressforms were obtained using Exyma-1200. Triangle Simplification and the Runge-Kutta method were applied to reduce the 3D scan data points and to make the segmented triangular patches in a plane from 3D data. As results, apparent differences between the tight-fitting collar patterns obtained from the 3D scan data and the ordinary 2D collar patterns were found around the center back line. The curvatures of the center back line were higher in all types of the tight-fitting collar than in the ordinary collar pattern. Relative differences in the shape of collar lines among four representative Korean men were reported. To fit the curved shape of the back neckline, 1.8 cm should be reduced from the upper neckline in average. We suggested the direct pattern making method for the 2D tight-fitting collar patterns considering the 3D shape of various types of men's dressform.

Radius Measurement of Fillet Regions of Polygonal Models by using Optimum Orthogonal Planes (최적 근사 직교평면을 이용한 폴리곤 모델의 필렛 반지름 측정)

  • Han Y,-H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.2
    • /
    • pp.114-120
    • /
    • 2005
  • This paper presents a novel method for radius measurement of fillet regions of polygonal models by using optimum onhogonal planes. The objective function for finding an optimum onhogonal plane is designed based on the orthogonality between the normal vectors of the faces in a filet region and the plane that is to be found. Direct search methods are employed to solve the defined optimization problem since no explicit derivatives of the object function can be calculated. Once an optimum orthogonal plane is obtained, the intersection between the onhogonal plane and the faces of interest is calculated, and necessary point data in the fillet region for measuring radii are extracted by some manipulation. Then, the radius of the fillet region in question is measured by least squares fitting of a circle to the extracted point data. The proposed radius measuring method could eliminate the burden of defining a plane for radius measurement, and automatically find a necessary optimum orthogonal plane. It has an advantage in that it can measure fillet radii without prior complicated segmentation of fillet regions and explicit information of neighboring surfaces. The proposed method is demonstrated trough some mea-surement examples.

Fitting a Piecewise-quadratic Polynomial Curve to Points in the Plane (평면상의 점들에 대한 조각적 이차 다항식 곡선 맞추기)

  • Kim, Jae-Hoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.1
    • /
    • pp.21-25
    • /
    • 2009
  • In this paper, we study the problem to fit a piecewise-quadratic polynomial curve to points in the plane. The curve consists of quadratic polynomial segments and two points are connected by a segment. But it passes through a subset of points, and for the points not to be passed, the error between the curve and the points is estimated in $L^{\infty}$ metric. We consider two optimization problems for the above problem. One is to reduce the number of segments of the curve, given the allowed error, and the other is to reduce the error between the curve and the points, while the curve has the number of segments less than or equal to the given integer. For the number n of given points, we propose $O(n^2)$ algorithm for the former problem and $O(n^3)$ algorithm for the latter.

Extraction of Electrical Parameters for Single and Differential Vias on PCB (PCB상 Single 및 Differential Via의 전기적 파라미터 추출)

  • Chae Ji Eun;Lee Hyun Bae;Park Hon June
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.4 s.334
    • /
    • pp.45-52
    • /
    • 2005
  • This paper presents the characterization of through hole vias on printed circuit board (PCB) through the time domain and frequency domain measurements. The time domain measurement was performed on a single via using the TDR, and the model parameters were extracted by the fitting simulation using HSPICE. The frequency domain measurement was also performed by using 2 port VNA, and the model parameters were extracted by fitting simulation with ADS. Using the ABCD matrices, the do-embedding equations were derived probing in the same plane in the VNA measurement. Based on the single via characterization, the differential via characterization was also performed by using TDR measurements. The time domain measurements were performed by using the odd mode and even mode sources in TDR module, and the Parameter values were extracted by fitting with HSPICE. Comparing measurements with simulations, the maximum calculated differences were $14\%$ for single vias and $17\%$ for differential vias.

Performance Test of Hypocenter Determination Methods under the Assumption of Inaccurate Velocity Models: A case of surface microseismic monitoring (부정확한 속도 모델을 가정한 진원 결정 방법의 성능평가: 지표면 미소지진 모니터링 사례)

  • Woo, Jeong-Ung;Rhie, Junkee;Kang, Tae-Seob
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • The hypocenter distribution of microseismic events generated by hydraulic fracturing for shale gas development provides essential information for understanding characteristics of fracture network. In this study, we evaluate how inaccurate velocity models influence the inversion results of two widely used location programs, hypoellipse and hypoDD, which are developed based on an iterative linear inversion. We assume that 98 stations are densely located inside the circle with a radius of 4 km and 5 artificial hypocenter sets (S0 ~ S4) are located from the center of the network to the south with 1 km interval. Each hypocenter set contains 25 events placed on the plane. To quantify accuracies of the inversion results, we defined 6 parameters: difference between average hypocenters of assumed and inverted locations, $d_1$; ratio of assumed and inverted areas estimated by hypocenters, r; difference between dip of the reference plane and the best fitting plane for determined hypocenters, ${\theta}$; difference between strike of the reference plane and the best fitting plane for determined hypocenters, ${\phi}$; root-mean-square distance between hypocenters and the best fitting plane, $d_2$; root-mean-square error in horizontal direction on the best fitting plane, $d_3$. Synthetic travel times are calculated for the reference model having 1D layered structure and the inaccurate velocity model for the inversion is constructed by using normal distribution with standard deviations of 0.1, 0.2, and 0.3 km/s, respectively, with respect to the reference model. The parameters $d_1$, r, ${\theta}$, and $d_2$ show positive correlation with the level of velocity perturbations, but the others are not sensitive to the perturbations except S4, which is located at the outer boundary of the network. In cases of S0, S1, S2, and S3, hypoellipse and hypoDD provide similar results for $d_1$. However, for other parameters, hypoDD shows much better results and errors of locations can be reduced by about several meters regardless of the level of perturbations. In light of the purpose to understand the characteristics of hydraulic fracturing, $1{\sigma}$ error of velocity structure should be under 0.2 km/s in hypoellipse and 0.3 km/s in hypoDD.

A Study on the Development of Image Processing Measurement System on the Structural Analysis by Optical Non-contact Measurement (광학적 비접촉 측정에 의한 구조물 해석의 화상처리 계측 시스템 개발에 관한 연구)

  • 김경석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.78-83
    • /
    • 1999
  • This study discusses a non-contact optical technique, electronic speckle pattern interformetry(ESPI), that is well suited for in-plane and out-of-plane deformation measurement. However, the existing ESPI methods that are based on dual-exposure, real-time and time-average method have difficulties for accurate measurement of structure, due to irregular intensity and shake of phase. Therefore, phase shifting method has been proposed in order to solve this problem. About the method, the path of reference light in interferometry is shifted and added to least square fitting method to make the improvement in distinction and precision. This proposed method is applied to measure in -plane displacement that is compared with the previous method. Also, Used as specimen AS4/PE따 [30/=30/90]s was analyzed by ESPI based on real-time to determine the characteristics of vibration under no-load and tension. These results are quantitatively compared with those of FEM analysis inmode shapes.

  • PDF

Improvement of Sensitivity to In-plane Strain/Deformation Measurement by Micro-ESPI Technique (마이크로 ESPI 기법에 의한 면내 변형 측정 민감도 향상)

  • Kim Dong-Iel;Kee Chang-Doo;Huh Yong-Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.54-63
    • /
    • 2006
  • Enhancement methods of sensitivity to in-plane strain measurement by micro-ESPI(Electronic Speckle Pattern Interferometry) technique were proposed using TiN and Au thin films. Micro-tensile strain over the micro-tensile specimens, prepared in micro-scale by those films, was measured by micro-tensile loading system and micro-ESPI system developed in this study. The subsequent measurement of in-plane tensile strain in the micro-sized specimens was introduced using the micro-ESPI technique, and the micro-tensile stress-strain curves for these films were determined. To enhance the sensitivity to measurement of in-plane tensile strain, algorithms of the phase estimation by using curve fitting of inter-fringe and the discrete Fourier Transform with object-induced dynamic phase shifting were developed. Using these two algorithms, the micro-tensile strain-stress curves were generated. It is shown that the algorithms for enhancement of the sensitivity suggested in this study make the sensitivity to measurement of the in-plane tensile strain increase.