• Title/Summary/Keyword: planar graph

Search Result 62, Processing Time 0.027 seconds

SYMMETRY OF MINIMAL GRAPHS

  • Jin, Sun Sook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.251-256
    • /
    • 2010
  • In this article, we consider a minimal graph in $R^3$ which is bounded by a Jordan curve and a straight line. Suppose that the boundary is symmetric with the reflection under a plane, then we will prove that the minimal graph is itself symmetric under the reflection through the same plane.

The Chromatic Number Algorithm in a Planar Graph (평면의 채색수 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.5
    • /
    • pp.19-25
    • /
    • 2014
  • In this paper, I seek the chromatic number, the maximum number of colors necessary when adjoining vertices in the plane separated apart at the distance of 1 shall receive distinct colors. The upper limit of the chromatic number has been widely accepted as $4{\leq}{\chi}(G){\leq}7$ to which Hadwiger-Nelson proposed ${\chi}(G){\leq}7$ and Soifer ${\chi}(G){\leq}9$ I firstly propose an algorithm that obtains the minimum necessary chromatic number and show that ${\chi}(G)=3$ is attainable by determining the chromatic number for Hadwiger-Nelson's hexagonal graph. The proposed algorithm obtains a chromatic number of ${\chi}(G)=4$ assuming a Hadwiger-Nelson's hexagonal graph of 12 adjoining vertices, and again ${\chi}(G)=4$ for Soifer's square graph of 8 adjoining vertices. assert. Based on the results as such that this algorithm suggests the maximum chromatic number of a planar graph is ${\chi}(G)=4$ using simple assigned rule of polynomial time complexity to color for a vertex with minimum degree.

A Graph Matching Algorithm for Circuit Partitioning and Placement in Rectilinear Region and Nonplanar Surface (직선으로 둘러싸인 영역과 비평면적 표면 상에서의 회로 분할과 배치를 위한 그래프 매칭 알고리즘)

  • Park, In-Cheol;Kyung, Chong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.529-532
    • /
    • 1988
  • This paper proposes a graph matching algorithm based on simulated annealing, which assures the globally optimal solution for circuit partitioning for the placement in the rectilinear region occurring as a result of the pre-placement of some macro cells, or onto the nonplanar surface in some military or space applications. The circuit graph ($G_{C}$) denoting the circuit topology is formed by a hierarchical bottom-up clustering of cells, while another graph called region graph ($G_{R}$) represents the geometry of a planar rectilinear region or a nonplanar surface for circuit placement. Finding the optimal many-to-one vertex mapping function from $G_{C}$ to $G_{R}$, such that the total mismatch cost between two graphs is minimal, is a combinatorial optimization problem which was solved in this work for various examples using simulated annealing.

  • PDF

SECURE DOMINATION PARAMETERS OF HALIN GRAPH WITH PERFECT K-ARY TREE

  • R. ARASU;N. PARVATHI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.4
    • /
    • pp.839-848
    • /
    • 2023
  • Let G be a simple undirected graph. A planar graph known as a Halin graph(HG) is characterised by having three connected and pendent vertices of a tree that are connected by an outer cycle. A subset S of V is said to be a dominating set of the graph G if each vertex u that is part of V is dominated by at least one element v that is a part of S. The domination number of a graph is denoted by the γ(G), and it corresponds to the minimum size of a dominating set. A dominating set S is called a secure dominating set if for each v ∈ V\S there exists u ∈ S such that v is adjacent to u and S1 = (S\{v}) ∪ {u} is a dominating set. The minimum cardinality of a secure dominating set of G is equal to the secure domination number γs(G). In this article we found the secure domination number of Halin graph(HG) with perfet k-ary tree and also we determined secure domination of rooted product of special trees.

CIRCULAR LIST COLORINGS OF SOME GRAPHS

  • WANG GUANGHUI;LIU GUIZHEN;YU JIGUO
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.149-156
    • /
    • 2006
  • The circular list coloring is a circular version of list colorings of graphs. Let $\chi_{c,l}$ denote the circular choosability(or the circular list chromatic number). In this paper, the circular choosability of outer planar graphs and odd wheel is discussed.

AN EXTENSION OF SALLEE'S THEOREM TO INFINITE LOCALLY FINITE VAP-FREE PLANE GRAPHS

  • Jung Hwan-Ok
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.83-93
    • /
    • 2006
  • A graph is k-cyclable if given k vertices there is a cycle that contains the k vertices. Sallee showed that every finite 3-connected planar graph is 5-cyclable. In this paper, by characterizing the circuit graphs and investigating the structure of LV-graphs, we extend his result to 3-connected infinite locally finite VAP-free plane graphs.

Using of Scattering Bond Graph Methodology for a Physical Characteristics Analysis of “D-CRLH” Transmission Line

  • Taghouti, Hichem;Jmal, Sabri;Mami, Abdelkader
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.943-950
    • /
    • 2016
  • In this paper, we propose to analyze the physical characteristics of a planar dual-composite right-left handed transmission line by a common application of Bond Graph approach and Scattering formalism (Methodology S.BG). The technique, we propose consists, on the one hand, of modeling of a dual composite right-left metamaterial transmission line (D-CRLH-TL) by Bond Graph approach, and, it consists of extracting the equivalent circuit of this studied structure. On the other hand, it consists to exploiting the scattering parameters (Scattering matrix) of the DCRLH-TL using the methodology which we previously developed since 2009. Finally, the validation of the proposed and used technique is carried out by comparisons between the simulations results with ADS and Maple (or MatLab).

On spanning 3-trees in infinite 3-connected planar graphs

  • Jung, Hwan-Ok
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.1-21
    • /
    • 1996
  • In this paper the existence of spanning 3-trees in every 3-connected locally finite vertex-accumulation-point-free planer graph is verified, which is an extension of D. Barnette to infinite graphs and which improves the result of the author.

  • PDF

On the Basis Number of the Semi-Strong Product of Bipartite Graphs with Cycles

  • Jaradat, M.M.M.;Alzoubi, Maref Y.
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.45-53
    • /
    • 2005
  • A basis of the cycle space C (G) is d-fold if each edge occurs in at most d cycles of C(G). The basis number, b(G), of a graph G is defined to be the least integer d such that G has a d-fold basis for its cycle space. MacLane proved that a graph G is planar if and only if $b(G)\;{\leq}\;2$. Schmeichel showed that for $n\;{\geq}\;5,\;b(K_{n}\;{\bullet}\;P_{2})\;{\leq}\;1\;+\;b(K_n)$. Ali proved that for n, $m\;{\geq}\;5,\;b(K_n\;{\bullet}\;K_m)\;{\leq}\;3\;+\;b(K_n)\;+\;b(K_m)$. In this paper, we give an upper bound for the basis number of the semi-strong product of a bipartite graph with a cycle.

  • PDF