
KYUNGPOOK Math. J. 45(2005), 45-53

On the Basis Number of the Semi-Strong Product of Bipartite
Graphs with Cycles

M.M.M. Jaradat and Maref Y. Alzoubi

Department of Mathematics, Yarmouk University, Irbid, Jordan

e-mail : mmjst4@yu.edu.jo and maref@yu.edu.jo

Abstract. A basis of the cycle space C(G) is d-fold if each edge occurs in at most d cycles

of C(G). The basis number, b(G), of a graph G is defined to be the least integer d such

that G has a d-fold basis for its cycle space. MacLane proved that a graph G is planar

if and only if b(G) ≤ 2. Schmeichel showed that for n ≥ 5, b(Kn • P2) ≤ 1 + b(Kn). Ali

proved that for n, m ≥ 5, b(Kn • Km) ≤ 3 + b(Kn) + b(Km). In this paper, we give an

upper bound for the basis number of the semi-strong product of a bipartite graph with a

cycle.

1. Introduction

Throughout this paper, we consider only finite simple connected graphs. Our
terminology and notation will be standard except as indicated.

Let G be a graph and e1, e2, · · · , e|E(G)| be an enumeration of its edges. Then

any subset S of E(G) corresponds to a (0, 1)-vector (ζ1, ζ2, · · · , ζ|E(G)|) ∈ (Z2)
|E(G)|

with ζi = 1 if ei ∈ S and ζi = 0 if ei /∈ S. Let C(G), called the cycle space, be the
subspace of (Z2)

|E(G)| generated by the vectors corresponding to the cycles in G.
We shall say that the cycles themselves, rather than the vectors corresponding to
them, generate C(G). It is well known that if r is the number of components of G,
then dim C(G) = |E(G)| − |V (G)|+ r.

A basis of C(G) is called d-fold if each edge of G occurs in at most d of the cycles
in the basis. The basis number of G, b(G), is the smallest non-negative integer
number d such that C(G) has a d-fold basis. The first important result concerning
the basis number of a graph was the theorem of MacLane when he proved that a
graph G is planar if and only if b(G) ≤ 2.

Schmeichel proved that there are graphs with arbitrary large basis numbers.
Moreover, Schmeichel proved that b(Kn) ≤ 3.

The required basis of C(G) is a basis with b(G)-fold. Let G and H be two
graphs, ϕ : G −→ H be an isomorphism and B be a (required) basis of C(G). Then
B
′

= {ϕ(c)|c ∈ B} is called the corresponding (required) basis of B in H.

Let G1 and G2 be two graphs. The direct product G = G1 ∧ G2 is the
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graph with the vertex set V (G) = V (G1) × V (G2) and the edge set E(G) =
{(u1, u2)(v1, v2)|u1v1 ∈ E1 and u2v2 ∈ E2}. The semi-strong product G = G1 •G2

is the graph with the vertex set V (G) = V (G1)× V (G2) and the edge set E(G) =
{(u1, u2)(v1, v2)|u1v1 ∈ E1 and u2v2 ∈ E2 or u1 = v1 and u2v2 ∈ E2 }. Note
that, |E(G1 ∧G2)| = 2 |E(G1)| |E(G2)| and |E(G1 •G2)| = 2 |E(G1)| |E(G2)|+
|V (G1)| |E(G2)|.

In this paper, we are interested in establishing an upper bound of the basis
number of the semi-strong product of a bipartite graph with a cycle. In the following
results of Schmeichel and Ali in which they give an upper bound for the basis number
of the semi-strong product of a complete graph Kn with a path P2 and a complete
graph Km.

Theorem 1.1. (Schmeichel) For each n ≥ 5, b(Kn • P2) ≤ 1 + b(Kn).

Theorem 1.2. (Ali) For each n,m ≥ 5, b(Kn •Km) ≤ 3 + b(Kn) + b(Km).

A tree T consisting of n equal order paths
{

P (1), P (2), · · · , P (n)
}

is called an
n-special star if there is a vertex, say v1, such that v1 is an end vertex for each
path in

{

P (1), P (2), · · · , P (n)
}

and V (P (i)) ∩ V (P (j)) = {v1} for each i 6= j (see
[5]). Jaradat proved the following result ([5]).

Theorem 1.3. (Jaradat) For each bipartite graph G, b(G ∧ Cn) ≤ 3 + b(G).
Moreover, b(G∧Cn) ≤ 2+b(G) if G has a spanning tree which contains no subgraph

isomorphic to a 3-special star of order 7.

It is well known (see Harary [4]) that the direct product of a bipartite graph G
with a path of order 2, P2, is disconnected, the following result ([5]) generalize this
result.

Proposition 1.4. (Jaradat) Let G be a bipartite graph and P2 be a path of order

2. Then G∧P2 consists of two components G1 and G2 each of which is isomorphic

to G.

In view of the above results, a natural question arises: does there exist an upper
bound of the basis number of the semi-strong product of graphs?

Our main purpose in this paper is to give a positive answer to the above ques-
tion by considering the semi-strong product of a bipartite graph with a cycle.

2. Main results

In this section, we give an upper bound of the basis number of the semi-strong
product of a bipartite graph with a cycle. Throughout this section we consider
Cn = v1v2 · · · vn−1vnv1 and the fold of an edge e in a set B ⊆ C(G), fB(e), is the
number of cycles in B containing e.

Lemma 2.1. For each cycle Cn with n ≥ 4 and path P2 = uw, we have

b(P2 • Cn) ≥ 3.
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Proof. Let A = {(u, v1), (w, v1), (w, v3)} and B = {(u, v2), (w, v2), (u, vn)}.
Consider the subgraph H of P2 • Cn whose vertex set V (H) = A ∪ B ∪
{(w, v4), (w, v5), · · · , (w, vn−1)} and edge set consists of the following nine paths:
P1 = (u, v1)(w, v2), P2 = (w, v1)(u, v2), P3 = (u, v1)(u, vn), P4 = (w, v1)(u, vn), P5

= (u, v1)(u, v2), P6 = (u, v2)(w, v3), P7 = (w, v1)(w, v2), P8 = (w, v2)(w, v3), and
P9 = (w, v3)(w, v4) · · · (w, vn−1)(u, vn). Then H is homeomorphic to K3,3. There-
fore, b(P2 • Cn) ≥ 3. ¤

Theorem 2.2. For each cycle Cn with n ≥ 4 and path P2 = uw, we have

b(P2 • Cn) = 3.

Proof. To prove this Lemma it suffices to exhibit a 3-fold basis for C(P2 • Cn). Set

BP2u =
{

B
(j)
P2u

= (u, vj)(u, vj+1)(u, vj+2)(w, vj+1)(u, vj) | j = 1, 2, · · · , n− 2
}

∪
{

B
(n−1)
P2u

= (u, vn−1)(u, vn)(u, v1)(w, vn)(u, vn−1)
}

, and

BP2w =
{

B
(j)
P2w

= (w, vj)(w, vj+1)(w, vj+2)(u, vj+1)(w, vj) | j = 1, 2, · · · , n− 2
}

∪
{

B
(n−1)
P2w

= (w, vn−1)(w, vn)(w, v1)(u, vn)(w, vn−1)
}

.

It is an easy matter to see that each of BP2u and BP2w is linearly independent.
Note that every linear combination of cycles of BP2u contains at least one edge of
the form (u, vj)(u, vj+1) and (u, v1)(u, vn) for some j which is not in any cycle of
BP2w. Thus BP2u ∪ BP2w is linearly independent set. Now, consider the following
two cycles:

Cu = (u, v1)(u, v2) · · · (u, vn)(u, v1) and Cw = (w, v1)(w, v2) · · · (w, vn)(w, v1).

We now prove that Cu is independent from the cycles of BP2u ∪ BP2w. Let F =
∑γ2

k=1 B
(jk)
P2w

(mod 2). Then F is an edge disjoint union of cycles and each of which
contains at least one edge of the form (w, vj)(w, vj+1) and (w, v1)(w, vn) for some

j. Thus, if Cu =
∑γ1

k=1 B
(jk)
P2u

+
∑γ2

k=1 B
(jk)
P2w
(mod 2), then γ2 must be equal to 0.

Hence Cu =
∑γ1

k=1 B
(jk)
P2u
(mod 2). To this end, we consider two cases:

Case 1. n is odd.
Since (u, v1)(u, v2), (u, v2)(u, v3) ∈ E(Cu) and the only cycle in BP2u contain-

ing (u, v1)(u, v2) is B
(1)
P2u
, we get B

(1)
P2u

∈
{

B
(j1)
P2u

,B
(j2)
P2u

, · · · ,B
(jγ1 )

P2u

}

and B
(2)
P2u

/∈
{

B
(j1)
P2u

,B
(j2)
P2u

, · · · , B
(jγ1 )

P2u

}

. Also since (u, v3)(u, v4), (u, v4)(u, v5) ∈ E(Cu)

and the only two cycles in BP2u containing (u, v3)(u, v4) are B
(2)
P2u
and B

(3)
P2u
, we

have B
(3)
P2u

∈
{

B
(j1)
P2u

,B
(j2)
P2u

, · · · ,B
(jγ1 )

P2u

}

and B
(4)
P2u

/∈
{

B
(j1)
P2u

,B
(j2)
P2u

, · · · ,B
(jγ1 )

P2u

}

.

Continuing in this way implies that B
(n−2)
P2u

∈
{

B
(j1)
P2u

,B
(j2)
P2u

, · · · ,B
(jγ1 )

P2u

}

. It is

easy to see that (u, v1)(u, vn) ∈ E(Cu), and the only cycle in BP2u contains
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this edge is B
(n−1)
P2u

. Then B
(n−1)
P2u

∈
{

B
(j1)
P2u

,B
(j2)
P2u

, · · · ,B
(jγ1 )

P2u

}

. One can see

easily that (u, vn)(u, vn−1) belongs only to B
(n−2)
P2u

, B
(n−1)
P2u

and Cu. Therefore,

it is not in
∑γ1

k=1 B
(jk)
P2u

(mod 2). This is a contradiction.

Case 2. n is even.
Then by the same arguments as in Case 1 we have that each of B

(1)
P2u

,B
(3)
P2u

,

· · · ,B
(n−3)
P2u

,B
(n−1)
P2u

∈
{

B
(j1)
P2u

,B
(j2)
P2u

, · · · ,B
(jγ1 )

P2u

}

and each of B
(2)
P2u

,B
(4)
P2u

, · · · ,

B
(n−2)
P2u

/∈
{

B
(j1)
P2u

,B
(j2)
P2u

, · · · ,B
(jγ1 )

P2u

}

. Therefore, Cu +
∑γ1

k=1 B
(jk)
P2u

(mod 2)

contains (u, vn−1)(w, vn). This is a contradiction.

Using the same arguments as above one can prove that Cw is independent from the
cycles of BP2u ∪ BP2w ∪ {Cu}. Therefore, BP2u ∪ BP2w ∪ {Cu} ∪ {Cw} is linearly
independent. Now, set

D = (u, v1)(u, v2)(w, v1)(w, v2)(u, v1).

To this end, we show that D is linearly independent from the cycles of BP2u ∪

BP2w∪{Cu}∪{Cw}. Let F =
{

B
(j1)
P2u

,B
(j2)
P2u

, · · · ,B
(jγ1 )

P2u

}

∪
{

B
(j1)
P2w

,B
(j2)
P2w

, · · · ,B
(jγ2 )

P2w

}

∪

{Cf}f∈A where A ⊆ {u,w}. Assume D =
∑γ1

k=1 B
(jk)
P2u

+
∑γ2

k=1 B
(jk)
P2w

+
∑

f∈S⊆A Cf

(mod 2). Since (u, v1)(w, v2) and (w, v1)(u, v2) are two edges of E(D) and the

only cycles in BP2u ∪BP2w ∪ {Cu} ∪ {Cw} containing these two edges are B
(1)
P2u

and

B
(1)
P2w
, respectively, as a result

{

B
(1)
P2u

,B
(1)
P2w

}

⊆ F . Also since (u, v2)(w, v3) and

(w, v2)(u, v3) are two edges of E(B
(1)
P2u
⊕B

(1)
P2w
) where ⊕ is the ring sum, and are not

in E(D) and the only two cycles containing these edges are B
(2)
P2u

and B
(2)
P2w
, we have

{

B
(2)
P2u

,B
(2)
P2w

}

⊆ F . Continuing in this way it implies that
{

B
(n−1)
P2u

,B
(n−1)
P2w

}

⊆ F .

Note that B
(n−1)
P2u

is the only cycle which contains only one of the following two

edges (u, vn)(w, v1) and (w, vn)(u, v2) and B
(n−1)
P2w

is the only cycle which contains
the other. Hence, these two edges belong to D, a contradiction. Therefore, BP2

=
BP2u ∪ BP2w {Cu} ∪ {Cw} ∪ {D} is linearly independent. Since |BP2

| = 2n + 1 =
dim C(P2 •C), BP2

is a basis for C(P2 •C). To complete the proof of the Theorem,
we show that B is a 3-fold basis. Let e ∈ E(P2 • Cn). (1) If e ∈ E(P2 ∧ Cn),
then fBP2u

(e) ≤ 1, fBP2w
(e) ≤ 1, f{Cu}∪{Cw}(e) = 0, and f{D}(e) ≤ 1. (2) If

e ∈ E(P2 • Cn)− E(P2 ∧ Cn), then fBP2u
(e) = 0, fBP2w

(e) = 0, f{Cu}∪{Cw}(e) ≤ 2,
and f{D}(e) ≤ 1 (see figure 1 which illustrates the case P2 • C4).

¤

In order to achieve our goal we find it is useful to give the following definition.
Let G be a graph and e1, e2, · · · e|E(G)|−1, e|E(G)| be an ordering of the edge set of
G. For each ei assign 1 to one of its two vertices and 0 to the other. Let u be a
vertex which is incident to en1

, en2
, · · · , enr where n1 < n2 < · · · < nr. Then u

corresponds to a (0,1)-vector (ξ1, ξ2, · · · , ξr) where ξi = 0 if 0 is assigned to u in
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Figure 1:

eni and ξi = 1 if 1 is assigned to u in eni . We call this vector a degree vector of
u and denote it by DVG(u). The set of all degree vectors of G will be denoted by
DV S(G). Note that DV S(G) is not unique because the values of the components
in each vector depend not only on the way we assign the 0’s and 1’s for the vertices
of edges of G but also on the way we label the edges of G.

Proposition 2.3. For each tree T of order ≥ 2, there is a degree vector set DV S(G)
such that the degree vector of any vertex contains exactly one entry of value 1, except

one end vertex has degree vector (0).

Proof. Label the edge of T . Pick any end vertex of T , say v∗, and let v∗v ∈ E(T ).
Assign the value 0 to the vertex v∗, so the vertex v has to take the value 1 in the
edge v∗v. Now, let {v1, v2, · · · , vr, v

∗} be the set of all vertices which are adjacent
to v. For each 1 ≤ j ≤ r assign the value 0 to v and 1 to each vi in the edge vv1,

vv1, · · · , vvr. For each 1 ≤ j ≤ r assume
{

vj1 , vj2 , · · · , vjrj , v
}

is the set of all

vertices which are adjacent to vj . For each 1 ≤ j ≤ r and 1 ≤ s ≤ rj assign the
value 0 to vj and 1 to vjs in each edge vjvjs . By continuing in this process, we get
that every degree vector of every vertex has exactly one of its components the value
1 except the degree vector of v∗ is (0) (see figure 2).
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Figure 2:

¤

The following lemma of Jaradat will play a useful role in the coming results:

Proposition 2.4. (Jaradat) For each tree T of order ≥ 3, there is a set of paths

S(T ) =
{

P
(1)
3 , P

(2)
3 , · · · , P

(m)
3

}

, called a path-sequence, such that

(i) each P
(i)
3 is a path of length 2,

(ii)
⋃m
i=1 E(P

(i)
3 ) = E(T )

(iii) every edge uv ∈ E(T ) appears in at most three paths of S(T ),

(iv) each P
(j)
3 contains one edge which is not in

⋃j−1
i=1 P

(i)
3 ,

(v) if uv appears in three paths of S(T ), then the paths have forms of either

uva, uvb and cuv or auv, buv or uvc,

(vi) for each end point v the edge vv∗ occurs in at most two paths of S(T ).

(vii) m = |V (T )| − 2 = |E(T )| − 1.

One can easily see from the proof of Proposition 2.4 (see [5]) that each S(T ),
which satisfies the conditions in Proposition 2.4, there is an edge whose one of its
vertices is an end vertex of T and appears only in one path of S(T ). Moreover, from
the proof of Proposition 2.3 we can assume that edge is the edge which contains the
vertex of degree vector (0).
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Let e = uw. In the following results we consider B(e) = Beu∪Cu if 1 is assigned
to u and 0 to w, and B(e) = Bew ∪ Cw if 1 is assigned to w and 0 to u where
Beu = BP2u and Bew = BP2w as in Lemma 2.2.

Lemma 2.5. For each tree T of order ≥ 2 and cycle Cn with n ≥ 4, we have

3 ≤ b(T • Cn) ≤ 4. Moreover, b(T • Cn) = 3 if T contains no subgraph isomorphic

to a 3-special star of order 7.

Proof. Let e ∈ E(T ). Then e•Cn is a subgraph of T •Cn. Since, by Lemma 2.2, e•Cn

is non planar, we get that T •Cn is non planar and so b(T •Cn) ≥ 3. Now, let S(T ) =
{

P
(1)
3 = a1b1c1, P

(2)
3 = a2b2c2, · · · , P

(|V (T )|−2)
3 = a|V (T )|−2b|V (T )|−2c|V (T )|−2

}

be

a path sequence as in Proposition 2.4. Let DVS(T) be the set of all degree vectors
of G as in Proposition 2.3. Set

B
P

(i)
3

= {(ai, vj+1)(bi, vj)(ci, vj+1)(bi, vj+2)(ai, vj+1) | j = 1, 2, · · · , n− 2}

∪ {(ai, vn)(bi, vn−1)(ci, vn)(bi, v1)(ai, vn)}

∪ {(ai, v1)(bi, v2)(ci, v1)(bi, vn)(ai, v1)} .

Let B∗ =
⋃|V (T )|−2
i=1 B

P
(i)
3
. Then B∗ is linearly independent (see [5]). We may

assume that P2 is the edge which contains the vertex with degree vector (0). Let
B
′

= BP2
∪ (

⋃

e∈E(T )−P2
B(e)). Since the degree vector of each vertex contains

exactly one entry of value 1 except one of the vertices of P2 which is an end vertex,

we get that E(B(e))∩E(B(e
′
)) = φ and E(B(e))∩E(BP2

) = φ whenever e
′

6= e and
e 6= P2. Hence, B

′

is linearly independent. To this end, one can easily see that each
cycle of B∗ consists of four edges. Moreover, each of these cycles either contains
an edge which is not in any cycle of B

′

or has exactly two edge belong to B(e) and

the other two belong to B(e
′
) or to BP2

for some e
′

6= e. Therefore, B = B∗ ∪B
′

is
linearly independent. Since

|B| = |B∗|+
∣

∣

∣
B
′
∣

∣

∣

=

|V (T )|−2
∑

i=1

∣

∣

∣
B
P

(i)
3

∣

∣

∣
+

∑

e∈E(T )−P2

∣

∣

∣
B(e)

∣

∣

∣
+ |BP2

|

=

|V (T )|−2
∑

i=1

n+
∑

e∈E(T )−P2

n+ (2n+ 1)

= dim C (T • Cn) ,

B is a basis for C (T • Cn). To conclude the proof of this Theorem, we show that B
satisfied the fold stated in the theorem. Let e ∈ E(T •Cn). (1) If e ∈ E((T −P2)∧
Cn), then fB∗(e) ≤ 3 (see [5]) and fB′ (e) ≤ 1. Moreover, fB∗(e) ≤ 2 (see [5]) and
fB′ (e) ≤ 1 if T contains no subgraph isomorphic to a 3-special star of order 7, (2) if
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e ∈ E(P2 ∧Cn), then fB∗(e) ≤ 1 and fB′ (e) ≤ 2 (3) if e ∈ E(P2 •Cn)−E(P2 ∧Cn),
then fB∗(e) = 0 and fB′ (e) ≤ 3. ¤

Theorem 2.6. Let G be a bipartite graph and Cn be a cycle. Then b(G • Cn) ≤
4 + b(G). Moreover, b(G • Cn) ≤ 3 + b(G) if G has a spanning tree contains no

subgraph isomorphic to a 3-special star of order 7.

Proof. Let TG be a spanning tree of G. Let BT be the basis of C(TG •Cn) as in

Lemma 2.5. Let Bvivi+1
= B

(1)
vivi+1 ∪B

(2)
vivi+1and Bv1vn = B

(1)
v1vn ∪B

(2)
v1vn where B

(1)
vivi+1

and B
(2)
vivi+1 , and B

(1)
v1vn and B

(2)
v1vnare the corresponding basis of the required basis

of the two copies of G ∧ vivi+1 and G ∧ v1vn, respectively. It is an easy matter

to see that E(B
(1)
vivi+1) ∩ E(B

(2)
vivi+1) = φ and E(B

(1)
v1vn) ∩ E(B

(2)
v1vn) = φ. Moreover,

E(Bvivi+1
) ∩ E(Bvjvj+1

) = φ and E(Bv1vn) ∩ E(Bvjvj+1
) = φ if i 6= j. Hence,

BG =
(

⋃n−1
i=1 Bvivi+1

)

∪ Bv1vn is linearly independent set. Note that each cycle of

BG contains at least one edge of E((G− TG)∧Cn) which is not in any cycle of BT .
Therefore B = BG ∪ BT is linearly independent set. Now

|B| = |BG|+ |BT |

= 2ndim C(G) + 2 |E(TG)| |E(C)|+ 1

= dim C(G • Cn),

Therefore, B is a basis. To this end, if e ∈ E(G • Cn) then fBG(e) ≤ b(G) and
fBT (e) ≤ 4. Moreover, fBG(e) ≤ b(G) and fBT (e) ≤ 3 if G contains no subgraph
isomorphic to a 3-special star of order 7. ¤
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