On the Basis Number of the Semi-Strong Product of Bipartite Graphs with Cycles

M.M.M. Jaradat and Maref Y. Alzoubi
Department of Mathematics, Yarmouk University, Irbid, Jordan
e-mail: mmjst4@yu.edu.jo and maref@yu.edu.jo

Abstract. A basis of the cycle space $\mathcal{C}(G)$ is d-fold if each edge occurs in at most d cycles of $\mathcal{C}(G)$. The basis number, $b(G)$, of a graph G is defined to be the least integer d such that G has a d-fold basis for its cycle space. MacLane proved that a graph G is planar if and only if $b(G) \leq 2$. Schmeichel showed that for $n \geq 5, b\left(K_{n} \bullet P_{2}\right) \leq 1+b\left(K_{n}\right)$. Ali proved that for $n, m \geq 5, b\left(K_{n} \bullet K_{m}\right) \leq 3+b\left(K_{n}\right)+b\left(K_{m}\right)$. In this paper, we give an upper bound for the basis number of the semi-strong product of a bipartite graph with a cycle.

1. Introduction

Throughout this paper, we consider only finite simple connected graphs. Our terminology and notation will be standard except as indicated.

Let G be a graph and $e_{1}, e_{2}, \cdots, e_{|E(G)|}$ be an enumeration of its edges. Then any subset S of $E(G)$ corresponds to a $(0,1)$-vector $\left(\zeta_{1}, \zeta_{2}, \cdots, \zeta_{|E(G)|}\right) \in\left(Z_{2}\right)^{|E(G)|}$ with $\zeta_{i}=1$ if $e_{i} \in S$ and $\zeta_{i}=0$ if $e_{i} \notin S$. Let $\mathcal{C}(G)$, called the cycle space, be the subspace of $\left(Z_{2}\right)^{|E(G)|}$ generated by the vectors corresponding to the cycles in G. We shall say that the cycles themselves, rather than the vectors corresponding to them, generate $\mathcal{C}(G)$. It is well known that if r is the number of components of G, then $\operatorname{dim} \mathcal{C}(G)=|E(G)|-|V(G)|+r$.

A basis of $\mathcal{C}(G)$ is called d-fold if each edge of G occurs in at most d of the cycles in the basis. The basis number of $G, b(G)$, is the smallest non-negative integer number d such that $\mathcal{C}(G)$ has a d-fold basis. The first important result concerning the basis number of a graph was the theorem of MacLane when he proved that a graph G is planar if and only if $b(G) \leq 2$.

Schmeichel proved that there are graphs with arbitrary large basis numbers. Moreover, Schmeichel proved that $b\left(K_{n}\right) \leq 3$.

The required basis of $\mathcal{C}(G)$ is a basis with $b(G)$-fold. Let G and H be two graphs, $\varphi: G \longrightarrow H$ be an isomorphism and \mathcal{B} be a (required) basis of $\mathcal{C}(G)$. Then $\mathcal{B}^{\prime}=\{\varphi(c) \mid c \in \mathcal{B}\}$ is called the corresponding (required) basis of \mathcal{B} in H.

Let G_{1} and G_{2} be two graphs. The direct product $G=G_{1} \wedge G_{2}$ is the
graph with the vertex set $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and the edge set $E(G)=$ $\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1} v_{1} \in E_{1}\right.$ and $\left.u_{2} v_{2} \in E_{2}\right\}$. The semi-strong product $G=G_{1} \bullet G_{2}$ is the graph with the vertex set $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and the edge set $E(G)=$ $\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1} v_{1} \in E_{1}\right.$ and $u_{2} v_{2} \in E_{2}$ or $u_{1}=v_{1}$ and $\left.u_{2} v_{2} \in E_{2}\right\}$. Note that, $\left|E\left(G_{1} \wedge G_{2}\right)\right|=2\left|E\left(G_{1}\right)\right|\left|E\left(G_{2}\right)\right|$ and $\left|E\left(G_{1} \bullet G_{2}\right)\right|=2\left|E\left(G_{1}\right)\right|\left|E\left(G_{2}\right)\right|+$ $\left|V\left(G_{1}\right)\right|\left|E\left(G_{2}\right)\right|$.

In this paper, we are interested in establishing an upper bound of the basis number of the semi-strong product of a bipartite graph with a cycle. In the following results of Schmeichel and Ali in which they give an upper bound for the basis number of the semi-strong product of a complete graph K_{n} with a path P_{2} and a complete graph K_{m}.

Theorem 1.1. (Schmeichel) For each $n \geq 5, b\left(K_{n} \bullet P_{2}\right) \leq 1+b\left(K_{n}\right)$.
Theorem 1.2. (Ali) For each $n, m \geq 5, b\left(K_{n} \bullet K_{m}\right) \leq 3+b\left(K_{n}\right)+b\left(K_{m}\right)$.
A tree T consisting of n equal order paths $\left\{P^{(1)}, P^{(2)}, \cdots, P^{(n)}\right\}$ is called an n-special star if there is a vertex, say v_{1}, such that v_{1} is an end vertex for each path in $\left\{P^{(1)}, P^{(2)}, \cdots, P^{(n)}\right\}$ and $V\left(P^{(i)}\right) \cap V\left(P^{(j)}\right)=\left\{v_{1}\right\}$ for each $i \neq j$ (see [5]). Jaradat proved the following result ([5]).

Theorem 1.3. (Jaradat) For each bipartite graph G, $b\left(G \wedge C_{n}\right) \leq 3+b(G)$. Moreover, $b\left(G \wedge C_{n}\right) \leq 2+b(G)$ if G has a spanning tree which contains no subgraph isomorphic to a 3-special star of order 7 .

It is well known (see Harary [4]) that the direct product of a bipartite graph G with a path of order $2, P_{2}$, is disconnected, the following result ([5]) generalize this result.

Proposition 1.4. (Jaradat) Let G be a bipartite graph and P_{2} be a path of order 2. Then $G \wedge P_{2}$ consists of two components G_{1} and G_{2} each of which is isomorphic to G.

In view of the above results, a natural question arises: does there exist an upper bound of the basis number of the semi-strong product of graphs?

Our main purpose in this paper is to give a positive answer to the above question by considering the semi-strong product of a bipartite graph with a cycle.

2. Main results

In this section, we give an upper bound of the basis number of the semi-strong product of a bipartite graph with a cycle. Throughout this section we consider $C_{n}=v_{1} v_{2} \cdots v_{n-1} v_{n} v_{1}$ and the fold of an edge e in a set $B \subseteq \mathcal{C}(G), f_{B}(e)$, is the number of cycles in B containing e.
Lemma 2.1. For each cycle C_{n} with $n \geq 4$ and path $P_{2}=u w$, we have $b\left(P_{2} \bullet C_{n}\right) \geq 3$.

Proof. Let $A=\left\{\left(u, v_{1}\right),\left(w, v_{1}\right),\left(w, v_{3}\right)\right\}$ and $B=\left\{\left(u, v_{2}\right),\left(w, v_{2}\right),\left(u, v_{n}\right)\right\}$. Consider the subgraph H of $P_{2} \bullet C_{n}$ whose vertex set $V(H)=A \cup B \cup$ $\left\{\left(w, v_{4}\right),\left(w, v_{5}\right), \cdots,\left(w, v_{n-1}\right)\right\}$ and edge set consists of the following nine paths: $P_{1}=\left(u, v_{1}\right)\left(w, v_{2}\right), P_{2}=\left(w, v_{1}\right)\left(u, v_{2}\right), P_{3}=\left(u, v_{1}\right)\left(u, v_{n}\right), P_{4}=\left(w, v_{1}\right)\left(u, v_{n}\right), P_{5}$ $=\left(u, v_{1}\right)\left(u, v_{2}\right), P_{6}=\left(u, v_{2}\right)\left(w, v_{3}\right), P_{7}=\left(w, v_{1}\right)\left(w, v_{2}\right), P_{8}=\left(w, v_{2}\right)\left(w, v_{3}\right)$, and $P_{9}=\left(w, v_{3}\right)\left(w, v_{4}\right) \cdots\left(w, v_{n-1}\right)\left(u, v_{n}\right)$. Then H is homeomorphic to $K_{3,3}$. Therefore, $b\left(P_{2} \bullet C_{n}\right) \geq 3$.

Theorem 2.2. For each cycle C_{n} with $n \geq 4$ and path $P_{2}=u w$, we have $b\left(P_{2} \bullet C_{n}\right)=3$.
Proof. To prove this Lemma it suffices to exhibit a 3 -fold basis for $\mathcal{C}\left(P_{2} \bullet C_{n}\right)$. Set

$$
\begin{aligned}
\mathcal{B}_{P_{2} u}= & \left\{\mathcal{B}_{P_{2} u}^{(j)}=\left(u, v_{j}\right)\left(u, v_{j+1}\right)\left(u, v_{j+2}\right)\left(w, v_{j+1}\right)\left(u, v_{j}\right) \mid j=1,2, \cdots, n-2\right\} \\
& \cup\left\{\mathcal{B}_{P_{2} u}^{(n-1)}=\left(u, v_{n-1}\right)\left(u, v_{n}\right)\left(u, v_{1}\right)\left(w, v_{n}\right)\left(u, v_{n-1}\right)\right\}, \text { and } \\
\mathcal{B}_{P_{2} w}= & \left\{\mathcal{B}_{P_{2} w}^{(j)}=\left(w, v_{j}\right)\left(w, v_{j+1}\right)\left(w, v_{j+2}\right)\left(u, v_{j+1}\right)\left(w, v_{j}\right) \mid j=1,2, \cdots, n-2\right\} \\
& \cup\left\{\mathcal{B}_{P_{2} w}^{(n-1)}=\left(w, v_{n-1}\right)\left(w, v_{n}\right)\left(w, v_{1}\right)\left(u, v_{n}\right)\left(w, v_{n-1}\right)\right\} .
\end{aligned}
$$

It is an easy matter to see that each of $\mathcal{B}_{P_{2} u}$ and $\mathcal{B}_{P_{2} w}$ is linearly independent. Note that every linear combination of cycles of $\mathcal{B}_{P_{2} u}$ contains at least one edge of the form $\left(u, v_{j}\right)\left(u, v_{j+1}\right)$ and $\left(u, v_{1}\right)\left(u, v_{n}\right)$ for some j which is not in any cycle of $\mathcal{B}_{P_{2} w}$. Thus $\mathcal{B}_{P_{2} u} \cup \mathcal{B}_{P_{2} w}$ is linearly independent set. Now, consider the following two cycles:

$$
C_{u}=\left(u, v_{1}\right)\left(u, v_{2}\right) \cdots\left(u, v_{n}\right)\left(u, v_{1}\right) \text { and } C_{w}=\left(w, v_{1}\right)\left(w, v_{2}\right) \cdots\left(w, v_{n}\right)\left(w, v_{1}\right)
$$

We now prove that C_{u} is independent from the cycles of $\mathcal{B}_{P_{2} u} \cup \mathcal{B}_{P_{2} w}$. Let $F=$ $\sum_{k=1}^{\gamma_{2}} \mathcal{B}_{P_{2} w}^{\left(j_{k}\right)}(\bmod 2)$. Then F is an edge disjoint union of cycles and each of which contains at least one edge of the form $\left(w, v_{j}\right)\left(w, v_{j+1}\right)$ and $\left(w, v_{1}\right)\left(w, v_{n}\right)$ for some j. Thus, if $C_{u}=\sum_{k=1}^{\gamma_{1}} \mathcal{B}_{P_{2} u}^{\left(j_{k}\right)}+\sum_{k=1}^{\gamma_{2}} \mathcal{B}_{P_{2} w}^{\left(j_{k}\right)}(\bmod 2)$, then γ_{2} must be equal to 0 . Hence $C_{u}=\sum_{k=1}^{\gamma_{1}} \mathcal{B}_{P_{2} u}^{\left(j_{k}\right)}(\bmod 2)$. To this end, we consider two cases:

Case 1. n is odd.
Since $\left(u, v_{1}\right)\left(u, v_{2}\right),\left(u, v_{2}\right)\left(u, v_{3}\right) \in E\left(C_{u}\right)$ and the only cycle in $\mathcal{B}_{P_{2} u}$ containing $\left(u, v_{1}\right)\left(u, v_{2}\right)$ is $\mathcal{B}_{P_{2} u}^{(1)}$, we get $\mathcal{B}_{P_{2} u}^{(1)} \in\left\{\mathcal{B}_{P_{2} u}^{\left(j_{1}\right)}, \mathcal{B}_{P_{2} u}^{\left(j_{2}\right)}, \cdots, \mathcal{B}_{P_{2} u}^{\left(j_{\gamma_{1}}\right)}\right\}$ and $\mathcal{B}_{P_{2} u}^{(2)} \notin$ $\left\{\mathcal{B}_{P_{2} u}^{\left(j_{1}\right)}, \mathcal{B}_{P_{2} u}^{\left(j_{2}\right)}, \cdots, \quad \mathcal{B}_{P_{2} u}^{\left(j_{\gamma_{1}}\right)}\right\}$. Also since $\left(u, v_{3}\right)\left(u, v_{4}\right),\left(u, v_{4}\right)\left(u, v_{5}\right) \in E\left(C_{u}\right)$ and the only two cycles in $\mathcal{B}_{P_{2} u}$ containing $\left(u, v_{3}\right)\left(u, v_{4}\right)$ are $\mathcal{B}_{P_{2} u}^{(2)}$ and $\mathcal{B}_{P_{2} u}^{(3)}$, we have $\mathcal{B}_{P_{2} u}^{(3)} \in\left\{\mathcal{B}_{P_{2} u}^{\left(j_{1}\right)}, \mathcal{B}_{P_{2} u}^{\left(j_{2}\right)}, \cdots, \mathcal{B}_{P_{2} u}^{\left(j_{\gamma_{1}}\right)}\right\}$ and $\mathcal{B}_{P_{2} u}^{(4)} \notin\left\{\mathcal{B}_{P_{2} u}^{\left(j_{1}\right)}, \mathcal{B}_{P_{2} u}^{\left(j_{2}\right)}, \cdots, \mathcal{B}_{P_{2} u}^{\left(j_{\gamma_{1}}\right)}\right\}$. Continuing in this way implies that $\mathcal{B}_{P_{2} u}^{(n-2)} \in\left\{\mathcal{B}_{P_{2} u}^{\left(j_{1}\right)}, \mathcal{B}_{P_{2} u}^{\left(j_{2}\right)}, \cdots, \mathcal{B}_{P_{2} u}^{\left(j_{\gamma_{1}}\right)}\right\}$. It is easy to see that $\left(u, v_{1}\right)\left(u, v_{n}\right) \in E\left(C_{u}\right)$, and the only cycle in $\mathcal{B}_{P_{2} u}$ contains
this edge is $\mathcal{B}_{P_{2} u}^{(n-1)}$. Then $\mathcal{B}_{P_{2} u}^{(n-1)} \in\left\{\mathcal{B}_{P_{2} u}^{\left(j_{1}\right)}, \mathcal{B}_{P_{2} u}^{\left(j_{2}\right)}, \cdots, \mathcal{B}_{P_{2} u}^{\left(j_{\gamma_{1}}\right)}\right\}$. One can see easily that $\left(u, v_{n}\right)\left(u, v_{n-1}\right)$ belongs only to $\mathcal{B}_{P_{2} u}^{(n-2)}, \mathcal{B}_{P_{2} u}^{(n-1)}$ and C_{u}. Therefore, it is not in $\sum_{k=1}^{\gamma_{1}} \mathcal{B}_{P_{2} u}^{\left(j_{k}\right)}(\bmod 2)$. This is a contradiction.
Case 2. n is even.
Then by the same arguments as in Case 1 we have that each of $\mathcal{B}_{P_{2} u}^{(1)}, \mathcal{B}_{P_{2} u}^{(3)}$, $\cdots, \mathcal{B}_{P_{2} u}^{(n-3)}, \mathcal{B}_{P_{2} u}^{(n-1)} \in\left\{\mathcal{B}_{P_{2} u}^{\left(j_{1}\right)}, \mathcal{B}_{P_{2} u}^{\left(j_{2}\right)}, \cdots, \mathcal{B}_{P_{2} u}^{\left(j_{\gamma_{1}}\right)}\right\}$ and each of $\mathcal{B}_{P_{2} u}^{(2)}, \mathcal{B}_{P_{2} u}^{(4)}, \cdots$, $\mathcal{B}_{P_{2} u}^{(n-2)} \notin\left\{\mathcal{B}_{P_{2} u}^{\left(j_{1}\right)}, \mathcal{B}_{P_{2} u}^{\left(j_{2}\right)}, \cdots, \mathcal{B}_{P_{2} u}^{\left(j_{\gamma_{1}}\right)}\right\}$. Therefore, $C_{u}+\sum_{k=1}^{\gamma_{1}} \mathcal{B}_{P_{2} u}^{\left(j_{k}\right)}(\bmod 2)$ contains $\left(u, v_{n-1}\right)\left(w, v_{n}\right)$. This is a contradiction.
Using the same arguments as above one can prove that C_{w} is independent from the cycles of $\mathcal{B}_{P_{2} u} \cup \mathcal{B}_{P_{2} w} \cup\left\{C_{u}\right\}$. Therefore, $\mathcal{B}_{P_{2} u} \cup \mathcal{B}_{P_{2} w} \cup\left\{C_{u}\right\} \cup\left\{C_{w}\right\}$ is linearly independent. Now, set

$$
D=\left(u, v_{1}\right)\left(u, v_{2}\right)\left(w, v_{1}\right)\left(w, v_{2}\right)\left(u, v_{1}\right)
$$

To this end, we show that D is linearly independent from the cycles of $\mathcal{B}_{P_{2} u} \cup$ $\mathcal{B}_{P_{2} w} \cup\left\{C_{u}\right\} \cup\left\{C_{w}\right\}$. Let $\mathcal{F}=\left\{\mathcal{B}_{P_{2} u}^{\left(j_{1}\right)}, \mathcal{B}_{P_{2} u}^{\left(j_{2}\right)}, \cdots, \mathcal{B}_{P_{2} u}^{\left(j_{\gamma_{1}}\right)}\right\} \cup\left\{\mathcal{B}_{P_{2} w}^{\left(j_{1}\right)}, \mathcal{B}_{P_{2} w}^{\left(j_{2}\right)}, \cdots, \mathcal{B}_{P_{2} w}^{\left(j_{\gamma_{2}}\right)}\right\} \cup$ $\left\{C_{f}\right\}_{f \in A}$ where $A \subseteq\{u, w\}$. Assume $D=\sum_{k=1}^{\gamma_{1}} \mathcal{B}_{P_{2} u}^{\left(j_{k}\right)}+\sum_{k=1}^{\gamma_{2}} \mathcal{B}_{P_{2} w}^{\left(j_{k}\right)}+\sum_{f \in S \subseteq A} C_{f}$ $(\bmod 2)$. Since $\left(u, v_{1}\right)\left(w, v_{2}\right)$ and $\left(w, v_{1}\right)\left(u, v_{2}\right)$ are two edges of $E(D)$ and the only cycles in $\mathcal{B}_{P_{2} u} \cup \mathcal{B}_{P_{2} w} \cup\left\{C_{u}\right\} \cup\left\{C_{w}\right\}$ containing these two edges are $\mathcal{B}_{P_{2} u}^{(1)}$ and $\mathcal{B}_{P_{2} w}^{(1)}$, respectively, as a result $\left\{\mathcal{B}_{P_{2} u}^{(1)}, \mathcal{B}_{P_{2} w}^{(1)}\right\} \subseteq \mathcal{F}$. Also since $\left(u, v_{2}\right)\left(w, v_{3}\right)$ and $\left(w, v_{2}\right)\left(u, v_{3}\right)$ are two edges of $E\left(\mathcal{B}_{P_{2} u}^{(1)} \oplus \mathcal{B}_{P_{2} w}^{(1)}\right)$ where \oplus is the ring sum, and are not in $E(D)$ and the only two cycles containing these edges are $\mathcal{B}_{P_{2} u}^{(2)}$ and $\mathcal{B}_{P_{2} w}^{(2)}$, we have $\left\{\mathcal{B}_{P_{2} u}^{(2)}, \mathcal{B}_{P_{2} w}^{(2)}\right\} \subseteq \mathcal{F}$. Continuing in this way it implies that $\left\{\mathcal{B}_{P_{2} u}^{(n-1)}, \mathcal{B}_{P_{2} w}^{(n-1)}\right\} \subseteq \mathcal{F}$. Note that $\mathcal{B}_{P_{2} u}^{(n-1)}$ is the only cycle which contains only one of the following two edges $\left(u, v_{n}\right)\left(w, v_{1}\right)$ and $\left(w, v_{n}\right)\left(u, v_{2}\right)$ and $\mathcal{B}_{P_{2} w}^{(n-1)}$ is the only cycle which contains the other. Hence, these two edges belong to D, a contradiction. Therefore, $\mathcal{B}_{P_{2}}=$ $\mathcal{B}_{P_{2} u} \cup \mathcal{B}_{P_{2} w}\left\{C_{u}\right\} \cup\left\{C_{w}\right\} \cup\{D\}$ is linearly independent. Since $\left|\mathcal{B}_{P_{2}}\right|=2 n+1=$ $\operatorname{dim} \mathcal{C}\left(P_{2} \bullet C\right), \mathcal{B}_{P_{2}}$ is a basis for $\mathcal{C}\left(P_{2} \bullet C\right)$. To complete the proof of the Theorem, we show that \mathcal{B} is a 3 -fold basis. Let $e \in E\left(P_{2} \bullet C_{n}\right)$. (1) If $e \in E\left(P_{2} \wedge C_{n}\right)$, then $f_{\mathcal{B}_{P_{2} u}}(e) \leq 1, f_{\mathcal{B}_{P_{2} w}}(e) \leq 1, f_{\left\{C_{u}\right\} \cup\left\{C_{w}\right\}}(e)=0$, and $f_{\{D\}}(e) \leq 1$. (2) If $e \in E\left(P_{2} \bullet C_{n}\right)-E\left(P_{2} \wedge C_{n}\right)$, then $f_{\mathcal{B}_{P_{2} u}}(e)=0, f_{\mathcal{B}_{P_{2} w}}(e)=0, f_{\left\{C_{u}\right\} \cup\left\{C_{w}\right\}}(e) \leq 2$, and $f_{\{D\}}(e) \leq 1$ (see figure 1 which illustrates the case $P_{2} \bullet C_{4}$).

In order to achieve our goal we find it is useful to give the following definition. Let G be a graph and $e_{1}, e_{2}, \cdots e_{|E(G)|-1}, e_{|E(G)|}$ be an ordering of the edge set of G. For each e_{i} assign 1 to one of its two vertices and 0 to the other. Let u be a vertex which is incident to $e_{n_{1}}, e_{n_{2}}, \cdots, e_{n_{r}}$ where $n_{1}<n_{2}<\cdots<n_{r}$. Then u corresponds to a $(0,1)$-vector $\left(\xi_{1}, \xi_{2}, \cdots, \xi_{r}\right)$ where $\xi_{i}=0$ if 0 is assigned to u in

Figure 1:
$e_{n_{i}}$ and $\xi_{i}=1$ if 1 is assigned to u in $e_{n_{i}}$. We call this vector a degree vector of u and denote it by $D V_{G}(u)$. The set of all degree vectors of G will be denoted by $D V S(G)$. Note that $D V S(G)$ is not unique because the values of the components in each vector depend not only on the way we assign the 0's and 1's for the vertices of edges of G but also on the way we label the edges of G.

Proposition 2.3. For each tree T of order ≥ 2, there is a degree vector set $D V S(G)$ such that the degree vector of any vertex contains exactly one entry of value 1, except one end vertex has degree vector (0).
Proof. Label the edge of T. Pick any end vertex of T, say v^{*}, and let $v^{*} v \in E(T)$. Assign the value 0 to the vertex v^{*}, so the vertex v has to take the value 1 in the edge $v^{*} v$. Now, let $\left\{v_{1}, v_{2}, \cdots, v_{r}, v^{*}\right\}$ be the set of all vertices which are adjacent to v. For each $1 \leq j \leq r$ assign the value 0 to v and 1 to each v_{i} in the edge $v v_{1}$, $v v_{1}, \cdots, v v_{r}$. For each $1 \leq j \leq r$ assume $\left\{v_{j_{1}}, v_{j_{2}}, \cdots, v_{j_{r_{j}}}, v\right\}$ is the set of all vertices which are adjacent to v_{j}. For each $1 \leq j \leq r$ and $1 \leq s \leq r_{j}$ assign the value 0 to v_{j} and 1 to $v_{j_{s}}$ in each edge $v_{j} v_{j_{s}}$. By continuing in this process, we get that every degree vector of every vertex has exactly one of its components the value 1 except the degree vector of v^{*} is (0) (see figure 2).

Figure 2:

The following lemma of Jaradat will play a useful role in the coming results:
Proposition 2.4. (Jaradat) For each tree T of order ≥ 3, there is a set of paths $S(T)=\left\{P_{3}^{(1)}, P_{3}^{(2)}, \cdots, P_{3}^{(m)}\right\}$, called a path-sequence, such that
(i) each $P_{3}^{(i)}$ is a path of length 2,
(ii) $\bigcup_{i=1}^{m} E\left(P_{3}^{(i)}\right)=E(T)$
(iii) every edge $u v \in E(T)$ appears in at most three paths of $S(T)$,
(iv) each $P_{3}^{(j)}$ contains one edge which is not in $\bigcup_{i=1}^{j-1} P_{3}^{(i)}$,
(v) if uv appears in three paths of $S(T)$, then the paths have forms of either uva, uvb and cuv or auv, buv or uvc,
(vi) for each end point v the edge vv* occurs in at most two paths of $S(T)$.
(vii) $m=|V(T)|-2=|E(T)|-1$.

One can easily see from the proof of Proposition 2.4 (see [5]) that each $S(T)$, which satisfies the conditions in Proposition 2.4, there is an edge whose one of its vertices is an end vertex of T and appears only in one path of $S(T)$. Moreover, from the proof of Proposition 2.3 we can assume that edge is the edge which contains the vertex of degree vector (0).

Let $e=u w$. In the following results we consider $\mathcal{B}^{(e)}=\mathcal{B}_{e u} \cup C_{u}$ if 1 is assigned to u and 0 to w, and $\mathcal{B}^{(e)}=\mathcal{B}_{e w} \cup C_{w}$ if 1 is assigned to w and 0 to u where $\mathcal{B}_{e u}=\mathcal{B}_{P_{2} u}$ and $\mathcal{B}_{e w}=\mathcal{B}_{P_{2} w}$ as in Lemma 2.2.

Lemma 2.5. For each tree T of order ≥ 2 and cycle C_{n} with $n \geq 4$, we have $3 \leq b\left(T \bullet C_{n}\right) \leq 4$. Moreover, $b\left(T \bullet C_{n}\right)=3$ if T contains no subgraph isomorphic to a 3-special star of order 7 .
Proof. Let $e \in E(T)$. Then $e \bullet C_{n}$ is a subgraph of $T \bullet C_{n}$. Since, by Lemma 2.2, e $\bullet C_{n}$ is non planar, we get that $T \bullet C_{n}$ is non planar and so $b\left(T \bullet C_{n}\right) \geq 3$. Now, let $S(T)=$ $\left\{P_{3}^{(1)}=a_{1} b_{1} c_{1}, P_{3}^{(2)}=a_{2} b_{2} c_{2}, \cdots, P_{3}^{(|V(T)|-2)}=a_{|V(T)|-2} b_{|V(T)|-2} c_{|V(T)|-2}\right\}$ be a path sequence as in Proposition 2.4. Let $\operatorname{DVS}(\mathrm{T})$ be the set of all degree vectors of G as in Proposition 2.3. Set

$$
\begin{aligned}
\mathcal{B}_{P_{3}^{(i)}}= & \left\{\left(a_{i}, v_{j+1}\right)\left(b_{i}, v_{j}\right)\left(c_{i}, v_{j+1}\right)\left(b_{i}, v_{j+2}\right)\left(a_{i}, v_{j+1}\right) \mid j=1,2, \cdots, n-2\right\} \\
& \cup\left\{\left(a_{i}, v_{n}\right)\left(b_{i}, v_{n-1}\right)\left(c_{i}, v_{n}\right)\left(b_{i}, v_{1}\right)\left(a_{i}, v_{n}\right)\right\} \\
& \cup\left\{\left(a_{i}, v_{1}\right)\left(b_{i}, v_{2}\right)\left(c_{i}, v_{1}\right)\left(b_{i}, v_{n}\right)\left(a_{i}, v_{1}\right)\right\} .
\end{aligned}
$$

Let $\mathcal{B}^{*}=\bigcup_{i=1}^{|V(T)|-2} \mathcal{B}_{P_{3}^{(i)}}$. Then \mathcal{B}^{*} is linearly independent (see [5]). We may assume that P_{2} is the edge which contains the vertex with degree vector (0). Let $\mathcal{B}^{\prime}=\mathcal{B}_{P_{2}} \cup\left(\bigcup_{e \in E(T)-P_{2}} \mathcal{B}^{(e)}\right)$. Since the degree vector of each vertex contains exactly one entry of value 1 except one of the vertices of P_{2} which is an end vertex, we get that $E\left(\mathcal{B}^{(e)}\right) \cap E\left(\mathcal{B}^{\left(e^{\prime}\right)}\right)=\phi$ and $E\left(\mathcal{B}^{(e)}\right) \cap E\left(\mathcal{B}_{P_{2}}\right)=\phi$ whenever $e^{\prime} \neq e$ and $e \neq P_{2}$. Hence, \mathcal{B}^{\prime} is linearly independent. To this end, one can easily see that each cycle of \mathcal{B}^{*} consists of four edges. Moreover, each of these cycles either contains an edge which is not in any cycle of \mathcal{B}^{\prime} or has exactly two edge belong to $\mathcal{B}^{(e)}$ and the other two belong to $\mathcal{B}^{\left(e^{\prime}\right)}$ or to $\mathcal{B}_{P_{2}}$ for some $e^{\prime} \neq e$. Therefore, $\mathcal{B}=\mathcal{B}^{*} \cup \mathcal{B}^{\prime}$ is linearly independent. Since

$$
\begin{aligned}
|\mathcal{B}| & =\left|\mathcal{B}^{*}\right|+\left|\mathcal{B}^{\prime}\right| \\
& =\sum_{i=1}^{|V(T)|-2}\left|\mathcal{B}_{P_{3}^{(i)}}\right|+\sum_{e \in E(T)-P_{2}}\left|\mathcal{B}^{(e)}\right|+\left|\mathcal{B}_{P_{2}}\right| \\
& =\sum_{i=1}^{|V(T)|-2} n+\sum_{e \in E(T)-P_{2}} n+(2 n+1) \\
& =\operatorname{dim} \mathcal{C}\left(T \bullet C_{n}\right),
\end{aligned}
$$

\mathcal{B} is a basis for $\mathcal{C}\left(T \bullet C_{n}\right)$. To conclude the proof of this Theorem, we show that \mathcal{B} satisfied the fold stated in the theorem. Let $e \in E\left(T \bullet C_{n}\right)$. (1) If $e \in E\left(\left(T-P_{2}\right) \wedge\right.$ C_{n}), then $f_{\mathcal{B}^{*}}(e) \leq 3$ (see [5]) and $f_{\mathcal{B}^{\prime}}(e) \leq 1$. Moreover, $f_{\mathcal{B}^{*}}(e) \leq 2$ (see [5]) and $f_{\mathcal{B}^{\prime}}(e) \leq 1$ if T contains no subgraph isomorphic to a 3 -special star of order $7,(2)$ if
$e \in E\left(P_{2} \wedge C_{n}\right)$, then $f_{\mathcal{B}^{*}}(e) \leq 1$ and $f_{\mathcal{B}^{\prime}}(e) \leq 2(3)$ if $e \in E\left(P_{2} \bullet C_{n}\right)-E\left(P_{2} \wedge C_{n}\right)$, then $f_{\mathcal{B}^{*}}(e)=0$ and $f_{\mathcal{B}^{\prime}}(e) \leq 3$.

Theorem 2.6. Let G be a bipartite graph and C_{n} be a cycle. Then $b\left(G \bullet C_{n}\right) \leq$ $4+b(G)$. Moreover, $b\left(G \bullet C_{n}\right) \leq 3+b(G)$ if G has a spanning tree contains no subgraph isomorphic to a 3-special star of order 7 .
Proof. Let T_{G} be a spanning tree of G. Let \mathcal{B}_{T} be the basis of $\mathcal{C}\left(T_{G} \bullet C_{n}\right)$ as in Lemma 2.5. Let $\mathcal{B}_{v_{i} v_{i+1}}=\mathcal{B}_{v_{i} v_{i+1}}^{(1)} \cup \mathcal{B}_{v_{i} v_{i+1}}^{(2)}$ and $\mathcal{B}_{v_{1} v_{n}}=\mathcal{B}_{v_{1} v_{n}}^{(1)} \cup \mathcal{B}_{v_{1} v_{n}}^{(2)}$ where $\mathcal{B}_{v_{i} v_{i+1}}^{(1)}$ and $\mathcal{B}_{v_{i} v_{i+1}}^{(2)}$, and $\mathcal{B}_{v_{1} v_{n}}^{(1)}$ and $\mathcal{B}_{v_{1} v_{n}}^{(2)}$ are the corresponding basis of the required basis of the two copies of $G \wedge v_{i} v_{i+1}$ and $G \wedge v_{1} v_{n}$, respectively. It is an easy matter to see that $E\left(\mathcal{B}_{v_{i} v_{i+1}}^{(1)}\right) \cap E\left(\mathcal{B}_{v_{i} v_{i+1}}^{(2)}\right)=\phi$ and $E\left(\mathcal{B}_{v_{1} v_{n}}^{(1)}\right) \cap E\left(\mathcal{B}_{v_{1} v_{n}}^{(2)}\right)=\phi$. Moreover, $E\left(\mathcal{B}_{v_{i} v_{i+1}}\right) \cap E\left(\mathcal{B}_{v_{j} v_{j+1}}\right)=\phi$ and $E\left(\mathcal{B}_{v_{1} v_{n}}\right) \cap E\left(\mathcal{B}_{v_{j} v_{j+1}}\right)=\phi$ if $i \neq j$. Hence, $\mathcal{B}_{G}=\left(\bigcup_{i=1}^{n-1} \mathcal{B}_{v_{i} v_{i+1}}\right) \cup \mathcal{B}_{v_{1} v_{n}}$ is linearly independent set. Note that each cycle of \mathcal{B}_{G} contains at least one edge of $E\left(\left(G-T_{G}\right) \wedge C_{n}\right)$ which is not in any cycle of \mathcal{B}_{T}. Therefore $\mathcal{B}=\mathcal{B}_{G} \cup \mathcal{B}_{T}$ is linearly independent set. Now

$$
\begin{aligned}
|\mathcal{B}| & =\left|\mathcal{B}_{G}\right|+\left|\mathcal{B}_{T}\right| \\
& =2 n \operatorname{dim} \mathcal{C}(G)+2\left|E\left(T_{G}\right)\right||E(C)|+1 \\
& =\operatorname{dim} \mathcal{C}\left(G \bullet C_{n}\right)
\end{aligned}
$$

Therefore, \mathcal{B} is a basis. To this end, if $e \in E\left(G \bullet C_{n}\right)$ then $f_{\mathcal{B}_{G}}(e) \leq b(G)$ and $f_{\mathcal{B}_{T}}(e) \leq 4$. Moreover, $f_{\mathcal{B}_{G}}(e) \leq b(G)$ and $f_{\mathcal{B}_{T}}(e) \leq 3$ if G contains no subgraph isomorphic to a 3 -special star of order 7 .

Acknowledgement. The author would like to thank the referee for his valuable comments.

References

[1] A. A. Ali, The basis number of complete multipartite graphs, Ars Combin., 28(1989), 41-49.
[2] A. A. Ali and G. T. Marougi, The basis number of cartesian product of some graphs, J. Indian Math. Soc. (NS), 58(1-4)(1992), 123-134.
[3] J. A. Bondy and U. S. Murty, Graph theory with applications, American Elsevier Publishing Co. Inc., New York, 1976.
[4] F. Harary, Graph theory, Addison-Wesley Publishing Co., Reading, Massachusetts, 1971.
[5] M. M. Jaradat, On the basis number of the direct product of graphs, Australasian Journal of Combinatorics, 27(2003), 293-306.
[6] S. MacLane, A combinatorial condition for planar graphs, Fundamenta Math., 28(1937), 22-32.
[7] E. F. Schmeichel, The basis number of a graph, J. Combin. Theory Ser. B, 30(2)(1981), 123-129.

