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SOME REMARKS ON TOTAL CURVATURE OF

A MINIMAL GRAPH

Andrzej Ganczar

Abstract. In this paper we discuss bounds for the total curvature of
nonparametric minimal surfaces by using the properties of planar har-
monic mappings.

1. Introduction

A complex–valued function f(z) = u(z) + iv(z), defined on some domain
D ⊂ C is a planar harmonic mapping if the components u and v are real–valued
harmonic functions which need not be conjugate. Throughout this article we
will discuss harmonic mappings of the unit disk D = {z ∈ C : |z| < 1}.
A harmonic mapping f defined on D can be uniquely written as f = h + g,

g(0) = 0, where h and g belong to the linear space H(D) of all holomorphic
functions on D. The mapping f is locally univalent if and only if its Jacobian
|h′|2 − |g′|2 does not vanish. If we require that f is orientation-preserving,
then the second complex dilatation ω(z) = g′(z)/h′(z) belongs to H(D) and
|ω(z)| < 1 on D. References for this material include [2] and [5].

Harmonic univalent mappings were first studied in connection with minimal
surfaces by E. Heinz (see [7]). This relationship between a univalent harmonic
mapping and a minimal graph M comes from conformal representation of M
via the Weierstrass-Enneper formulas (see e.g. [4]). Let M = {(u, v, F (u, v)) :
(u, v) ∈ Ω} be a nonparametric surface lying over a simply connected proper
subdomain Ω of the complex plane C. If M is parametrized by orientation-
preserving isothermal parameters z = x + iy ∈ D, the projection onto its
base plane gives a univalent harmonic mapping f(z) = u + iv of D onto Ω
whose dilatation ω is the square of an holomorphic function with |ω(z)| < 1
on D. Conversely, if f = h+ g is an orientation-preserving univalent harmonic
mapping of D onto Ω with dilatation ω = p2 for some function p ∈ H(D), then
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the formulas

u(z) = Re{f(z)}, v(z) = Im{f(z)}, F (z) = 2Im
{

∫ z

z0
h′(ζ)p(ζ)dζ

}

define by isothermal parameters a nonparametric minimal surface M whose
projection is f, so the first fundamental form of M is ds2 = λ2|dz|2, where
λ = |h′| + |g′| is the conformal metric. Recall, that the general formula for
Gauss curvature is

K = −
1

λ2
∆(logλ),

where ∆ denotes the Laplacian. Therefore, in terms of the harmonic mapping
f = h+ g, the Gauss curvature is found to be

K(ξ) = −
|ω′(z)|2

|h′(z)g′(z)|(1 + |ω(z)|)4
, z ∈ D

at a point ξ ∈ M that lies above f(z). The equality ω = p2 implies that

(1) K = −
4|p′|2

(|h′|+ |g′|)2(1 + |p|2)2
.

2. Main results

Suppose that M is a minimal graph given by orientation-preserving isother-
mal parameters over a simply connected domain Ω, Ω ⊂ C, and f : D → Ω is
an orientation-preserving univalent harmonic mapping with dilatation ω = p2

corresponding to M. If we now let G to be a domain whose closure is in D, the
surface over f(G) ⊂ Ω has total curvature Tf,p(G) given by

(2) Tf,p(G) =

∫∫

G

Kλ2dA(z), z = x+ iy,

where dA(z) = dxdy is the Euclidean area element. From (1) and (2) we obtain

(3) Tf,p(G) = −4

∫∫

G

|p′(z)|2

(1 + |p(z)|2)2
dA(z),

which is due to the fact that f has dilatation ω = p2. It should be noted that

p♯(z) = |p′(z)|
1+|p(z)|2 is the spherical derivative of p, and consequently 1

4 |Tf,p(G)|

is the area of the spherical image of p(G) counted with multiplicity. By the
above |Tf,p(G)| ≥ 4As(p(G)), where As(p(G)) is the spherical area of the set
p(G) identified with its projection to the Riemann sphere.

Since p is a holomorphic function mapping D into itself, the Schwarz-Pick
lemma gives

|Tf,p(G)| ≤ 4

∫∫

G

(

1− |p(z)|2

1 + |p(z)|2

)2
dA(z)

(1 − |z|2)2
≤ 4

∫∫

G

dA(z)

(1− |z|2)2

as is easy to check. An estimate due to Goluzin yields a refinement of the above
inequality.
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Lemma 2.1. Suppose that p ∈ H(D) has the expansion p(z) = a0+
∑

∞

n=k anz
n,

where k ≥ 1, and f is an orientation-preserving univalent harmonic mapping

with dilatation ω = p2. Then

|Tf,p(G)| ≤ 4k2
∫∫

G

|z|2k−2

(1 − |z|2k)2
dA(z).

Proof. We have used only the fact (see [6, page 333]) that

(4) (1 − |z|2k)|p′(z)| ≤ k|z|k−1(1− |p(z)|2), z ∈ D

for a function p(z) = a0+
∑

∞

n=k anz
n, where k ≥ 1, holomorphic and |p(z)| < 1

on D. �

Given any r ∈ (0, 1) suppose that Dr = {z ∈ C : |z| < r}. Taking G = Dr

we can now rephrase Lemma 2.1 as follows.

Corollary 2.2. For any r ∈ (0, 1) we have

|Tf,p(Dr)| ≤ 4π
r2

1− r2
.

Theorem 2.3. Let f be a harmonic univalent mapping of D with dilatation

ω = p2, where p ∈ H(D), p(D) ⊂ D and p(0) = 0. If r2 ∈ [m−1
m

, m
m+1 ], where

m ∈ N, then

|Tf,p(Dr)| ≤ 4mπr2m.

Proof. Assume that f has dilatation ω = p2 and observe that

|Tf,p(Dr)| ≤ 4

∫∫

Dr

|p′(z)|2dA(z) = 4

∫ 2π

0

∫ r

0

|p′(ρeiθ)|ρdρdθ

which is clear from (3). Then the assertion follows from [8, Corollary on page
262], since p is subordinate to the identity function I(z) = z. �

In particular we obtain:

Corollary 2.4. Under the assumptions of Theorem 2.3, we have

|Tf,p(Dr)| ≤
4π

e
(m+ 1), r2 ∈

[

m− 1

m
,

m

m+ 1

]

for all m ∈ N.

Proof. Theorem 2.3 yields |Tf,p(Dr)| ≤ 4π(m + 1)( m
m+1)

m+1 for all m−1
m

≤

r2 ≤ m
m+1 . To prove the result we note that (( m

m+1 )
m+1)m∈N is an increasing

sequence and lim
m→∞

( m
m+1 )

m+1 = e−1. �

Theorem 2.5. Suppose that f has the dilatation ω = p2, where p ∈ H(D),
p(0) = 0 and |p(z)| < 1 on D. For any fixed r ∈ (0, 1) we have

Af,p(r) =

∫ r

0

|Tf,p(Dt)|

t
dt ≤ 2π log (1 + r2).
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Equality holds if p is a function of the form p(z) = eiθz, θ ∈ R. In particular,

for any r ∈ (0, 1) we have Af,p(r) < 2π log 2.

Proof. We have

∆ log (1 + |p(z)|2) =
4|p′(z)|2

(1 + |p(z)|2)2
,

where ∆ denotes the Laplacian in the z-coordinate. On the account of this, an
application of Green’s theorem gives

|Tf,p(Dr)| =

∫

|z|=r

∂

∂n
log (1 + |p(z)|2)ds = r

∂

∂r

∫ 2π

0

log (1 + |p(reiθ)|2)dθ,

and for r ∈ (0, 1) we get
∫ r

0

|Tf,p(Dt)|

t
dt =

∫ 2π

0

log (1 + |p(reiθ)|2)dθ − 2π log (1 + |p(0)|2).

The Schwarz lemma enables us to write |p(z)| ≤ |z| on D, and finally
∫ r

0

|Tf,p(Dt)|

t
dt ≤

∫ 2π

0

log (1 + r2)dθ = 2π log (1 + r2) < 2π log 2

for a fixed r ∈ (0, 1). �

Now, we wish to investigate the case when p is a Bloch function. This means
that the Bloch constant βp = sup{(1 − |z|2)|p′(z)| : z ∈ D} is finite. Assume
that f is an orientation-preserving univalent harmonic mapping of D and has
a dilation ω = p2, where p is a Bloch function. Since p(D) ⊂ D, the constant
βp is no greater than one. This clearly forces

(5) |Tf,p(Dr)| ≤ 4πβ2
p

r2

1− r2
, r ∈ (0, 1).

Theorem 2.6. If f is an orientation-preserving univalent harmonic mapping

with dilatation ω = p2, where p is a non-vanishing inner function or an outer

function, then

|Tf,p(Dr)| ≤
16π

e2
r2

1− r2
, r ∈ (0, 1).

Proof. In the case we have βp = 2
e
(see [3, Theorem 5]). �

Given a ∈ D, let ϕa(z) = (a − z)/(1 − az) be a Möbius transformation of
D, and let ∆(a, r) = {z ∈ D : |ϕa(z)| < r} be the pseudohyperbolic disk with
center a and radius r ∈ (0, 1). The composition Fa = f ◦ ϕa is again univalent
harmonic and orientation-preserving on D, but the important thing is that Fa

has dilatation ω ◦ ϕa = (p ◦ ϕa)
2. Therefore, we can consider a nonparametric

minimal surface Ma corresponding to Fa for a fixed a ∈ D. Then for a fixed
r ∈ (0, 1) we have

AFa,p◦ϕa
(r) = 4

∫ r

0

dt

t

∫∫

Dt

[(p ◦ ϕa)
♯]2dA(z)
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= 4

∫ r

0

dt

t

∫∫

∆(a,t)

[p♯(z)]2dA(z)

≤ 4β2
p

∫ r

0

dt

t

∫∫

∆(a,t)

dA(z)

(1− |z|2)2

= 2πβ2
p log

1

1− r2
,

provided that p is a Bloch function. In particular, given r ∈ (0, 1) we have
sup
a∈D

AFa,p◦ϕa
(r) < ∞.

3. Remarks

It follows from [9, Theorem 1] that p♯(z) ≤
√

β
π−β

(1−|z|2)−1 at each z ∈ D,

provided As(p(D)) ≤ β < π. Note that in our case we have As(p(D)) ≤ β ≤ π
2 ,

since p(D) ⊂ D, and this gives

|Tf,p(Dr)| ≤
4πβ

π − β

r2

1− r2
, r ∈ (0, 1).

Assume that p is not necessarily Bloch and sup
a∈D

AFa,p◦ϕa
(r) < ∞ for some

r ∈ (0, 1). Then exists r∗ ∈ (0, r) such that

sup
a∈D

AFa,p◦ϕa
(r) < log

r

r∗

and according to the above

AFa,p◦ϕa
(r) ≥ 4

∫ r

r∗

dt

t

∫∫

∆(a,t)

[p♯(z)]2dA(z)

≥ 4

(

log
r

r∗

)∫∫

∆(a,r∗)

[p♯(z)]2dA(z),

which yields

sup
a∈D

|Tf,p(∆(a, r∗))| ≤

(

log
r

r∗

)

−1

sup
a∈D

AFa,p◦ϕa
(r) < 1.

According to [3, Theorem 6], if p : D → D is holomorphic on D with βp = 1
then either p is conformal automorphism of D or all zeros of p define a conver-
gent infinite Blaschke product B with βB = 1.

If p is finite Blaschke product of degree greater than 1, then βp < 1 (see
[3, Corollary on page 96]) and (5) is better than the bound given in Corollary
2.2. If, in addition, f(D) is a simple bounded polygonal domain, then M is
a Jenkins–Serrin surface (see e.g. [1]).
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