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SOME REMARKS ON TOTAL CURVATURE OF
A MINIMAL GRAPH

ANDRZEJ GANCZAR

ABSTRACT. In this paper we discuss bounds for the total curvature of
nonparametric minimal surfaces by using the properties of planar har-
monic mappings.

1. Introduction

A complex—valued function f(z) = u(z) + iv(z), defined on some domain
D C Cis a planar harmonic mapping if the components u and v are real-valued
harmonic functions which need not be conjugate. Throughout this article we
will discuss harmonic mappings of the unit disk D = {z € C : |z < 1}.
A harmonic mapping f defined on D can be uniquely written as f = h + 7,
9(0) = 0, where h and g belong to the linear space H(ID) of all holomorphic
functions on . The mapping f is locally univalent if and only if its Jacobian
|h'|? — |¢'|? does not vanish. If we require that f is orientation-preserving,
then the second complex dilatation w(z) = ¢'(z)/h'(z) belongs to H(D) and
|w(z)] < 1 on D. References for this material include [2] and [5].

Harmonic univalent mappings were first studied in connection with minimal
surfaces by E. Heinz (see [7]). This relationship between a univalent harmonic
mapping and a minimal graph M comes from conformal representation of M
via the Weierstrass-Enneper formulas (see e.g. [4]). Let M = {(u, v, F(u,v)) :
(u,v) € Q} be a nonparametric surface lying over a simply connected proper
subdomain €2 of the complex plane C. If M is parametrized by orientation-
preserving isothermal parameters z = = + iy € D, the projection onto its
base plane gives a univalent harmonic mapping f(z) = u + iv of D onto Q
whose dilatation w is the square of an holomorphic function with |w(z)| < 1
on . Conversely, if f = h 4 g is an orientation-preserving univalent harmonic
mapping of D onto Q with dilatation w = p? for some function p € H(D), then
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the formulas
u(z) = Relf(2)}, v(z) =m{f(2)}, F(2) = 2m{ [Z W(Op()dC |

define by isothermal parameters a nonparametric minimal surface M whose
projection is f, so the first fundamental form of M is ds? = A\?|dz|?, where
A = || + |¢| is the conformal metric. Recall, that the general formula for
Gauss curvature is

1
K= —EA(log A),

where A denotes the Laplacian. Therefore, in terms of the harmonic mapping
f = h+7, the Gauss curvature is found to be

jw'(2)”
W' (2)g' (2)|(1 + |w(2)])*
at a point £ € M that lies above f(z). The equality w = p? implies that
Alp'?
(W +1g'D)? (L + [pl?)?

zeD

K(§) =~

1) K=

2. Main results

Suppose that M is a minimal graph given by orientation-preserving isother-
mal parameters over a simply connected domain 2, Q C C, and f: D — Q is
an orientation-preserving univalent harmonic mapping with dilatation w = p?
corresponding to M. If we now let G to be a domain whose closure is in D, the
surface over f(G) C 2 has total curvature T ,(G) given by

(2) T p(G) = /gK)\QdA(z), z=x+ 1y,

where dA(z) = dxdy is the Euclidean area element. From (1) and (2) we obtain

Q 15,00) = =4 [ G aat),

which is due to the fact that f has dilatation w = p2. It should be noted that

pi(z) = 1J_ﬁ;)((i))||2 is the spherical derivative of p, and consequently |7y ,(G)|

is the area of the spherical image of p(G) counted with multiplicity. By the
above [Ty ,(G)| > 4As(p(G)), where A,(p(G)) is the spherical area of the set
p(G) identified with its projection to the Riemann sphere.

Since p is a holomorphic function mapping D into itself, the Schwarz-Pick
lemma gives

Tsp(9 |<4//Glli |2)2(1|z 7 = // 1*II

as is easy to check. An estimate due to Goluzin yields a refinement of the above
inequality.
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Lemma 2.1. Suppose thatp € H(D) has the expansion p(z) = ag+y_ ;. anz",
where k > 1, and f is an orientation-preserving univalent harmonic mapping
with dilatation w = p?. Then

| |2k 2
T} (G |<4k2// (SR dA(z).

Proof. We have used only the fact (see [6, page 333]) that

(4) (1= PP)Ip ()] < K=" (1 = [p(2)]?), 2z €D
for a function p(z) = ap+ >, -, anz™, where k > 1, holomorphic and |p(z)| < 1
on D. g

Given any r € (0,1) suppose that D, = {z € C: |z| < r}. Taking G = D,
we can now rephrase Lemma 2.1 as follows.

Corollary 2.2. For any r € (0,1) we have
2

,
Typ(D2)] < dm .

—r
Theorem 2.3. Let f be a harmonic univalent mapping ofID) with dilatation
w = p?, where p € H(D), p(D) C D and p(0) = 0. If r?* € [ ], where
m € N, then

m ’m+1

[Ty (D,)] < 4y

Proof. Assume that f has dilatation w = p? and observe that

2
Tsp(D |<4// 2)PdA( )*4/ /Ip pe’’)|pdpdd

which is clear from (3). Then the assertion follows from [8, Corollary on page
262], since p is subordinate to the identity function I(z) = z. O

In particular we obtain:

Corollary 2.4. Under the assumptions of Theorem 2.3, we have

4m m—1 m
Ty (D,)] < -~ 1), r2e |- M
710 < Fm ), e [Tt ]

for allm € N.
Proof. Theorem 2.3 yields |Ty,(Dy)| < 4m(m + 1)(525)™ ! for all 2=l <
r? < M. To prove the result we note that ((5:25)™"!)men is an 1ncreasmg‘
sequence and lim (7)™ =7t O
m—»o0

Theorem 2.5. Suppose that f has the dilatation w = p*, where p € H(D),
p(0) =0 and |p(z)| <1 onD. For any fized r € (0,1) we have

Ap,(r) = /OWdtg%rlog(lJrTQ).
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Equality holds if p is a function of the form p(z) = ¢z, 0 € R. In particular,
for any r € (0,1) we have Ay ,(r) < 2mlog 2.
Proof. We have

Alp'(2)?
(1+[p(2)1?)*’
where A denotes the Laplacian in the z-coordinate. On the account of this, an
application of Green’s theorem gives

_ a 2 _ 8 o AP
T30 = [ Getom (i In(e) s = vt [ s (14 e ) )

|z|=r

Alog (1 +[p(=)?) =

and for r € (0,1) we get

T T D 2 .
/ Wdt = / log (1+ |p(7°e“9)|2)d9 — 2 log (1 + [p(0)]?).
0 0

The Schwarz lemma enables us to write [p(z)| < |z| on D, and finally

T D 2
/ Wdt < / log (1 +7%)df = 2nlog (1 + ) < 27log?2
0 0

for a fixed 7 € (0,1). O

Now, we wish to investigate the case when p is a Bloch function. This means
that the Bloch constant 3, = sup{(1 — |2|?)|p’(z)| : z € D} is finite. Assume
that f is an orientation-preserving univalent harmonic mapping of D and has
a dilation w = p?, where p is a Bloch function. Since p(D) C D, the constant
Bp is no greater than one. This clearly forces

2

(5) (Typ(D0)| < 478}

5, 7€(0,1).
—r

Theorem 2.6. If f is an orientation-preserving univalent harmonic mapping
with dilatation w = p%, where p is a non-vanishing inner function or an outer
function, then

167 12
|Tp(Dr)| < = 1_,2 "€ (0,1).
Proof. In the case we have 3, = 2 (see [3, Theorem 5]). O

Given a € D, let ¢,(2) = (a — 2)/(1 — az) be a Mdbius transformation of
D, and let A(a,r) = {z € D : |pa(z)| < r} be the pseudohyperbolic disk with
center a and radius r € (0, 1). The composition F, = f o ¢, is again univalent
harmonic and orientation-preserving on D, but the important thing is that Fj,
has dilatation w o ¢, = (p o ,)%. Therefore, we can consider a nonparametric
minimal surface M, corresponding to F, for a fixed a € D. Then for a fixed
r € (0,1) we have

Aregonn(r) =4 [ G [[ (0o cPaac)
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4/”@//aﬂwwwmuﬁ
<4W/,ﬁ//aﬂl—v

= 27rﬁ2 log —— T
provided that p is a Bloch function. In particular, given r € (0,1) we have

sup Ar, pop, (1) < 0.
acD

3. Remarks
It follows from [9, Theorem 1] that pf(2) < W—fﬁ(l —|2?)7! at each z € D,
provided A;(p(D)) < 8 < 7. Note that in our case we have A;(p(D)) < < &
since p(D) C D, and this gives

ArB 12
Tt p(Dyr)| < —, 0,1).
13500 < 22— re(0)
Assume that p is not necessarily Bloch and sup Ar, poy, (1) < oo for some

a€D
€ (0,1). Then exists 7. € (0,7) such that

r
Sup AFa ,POPa (T) < 1Og -
acD T %

and according to the above

Apy oo (r 24/ %//A(t D2dA(2)

>

i
/N

—

]

O]
S
S~
—
s %
B
B

QL

A~

&

which yields

-1
sup [Ty p(A(a, )| < <1og i) SUp A, pog, (1) < 1.
a€bD T a€D

According to [3, Theorem 6], if p : D — D is holomorphic on D with 8, =1
then either p is conformal automorphism of I or all zeros of p define a conver-
gent infinite Blaschke product B with g = 1.

If p is finite Blaschke product of degree greater than 1, then 5, < 1 (see
[3, Corollary on page 96]) and (5) is better than the bound given in Corollary
2.2. If, in addition, f(D) is a simple bounded polygonal domain, then M is
a Jenkins—Serrin surface (see e.g. [1]).
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