• Title/Summary/Keyword: pixel intensity

Search Result 285, Processing Time 0.026 seconds

Dual Image Sensor and Image Estimation Technique for Multiple Optical Interference Cancellation in High Speed Transmission Visible Light Communication Environment (고속 전송 가시광통신 환경에서의 다중 광 간섭 제거를 위한 듀얼 이미지 센서 및 이미지 추정기법)

  • Han, Doohee;Lee, Kyujin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.480-483
    • /
    • 2018
  • In this paper, we study the interference canceling and image sensing processing technology of multiple light sources for high speed transmission in CMOS sensor based visible light communication system. To improve transmission capacity in optical camera communications via image sensors, different data must be transmitted simultaneously from each LED. However, multiple LED light source environments for high-speed transmission can cause interference between adjacent LEDs. In this case, since the visible light communication system generally uses intensity modulation, when a plurality of LEDs transmit data at the same time, it is difficult to accurately detect the respective LEDs due to the light scattering interference of the adjacent LEDs. In order to solve this problem, the ON / OFF state of many LEDs of the light source is accurately recognized by using a dual CMOS sensor, and the spectral estimation technique and the pixel image signal processing technique of each LED are proposed. This technique can accurately recognize multiple LED pixels and improve the total average bit error rate and throughput of a MISO-VLC system.

  • PDF

Visual Voice Activity Detection and Adaptive Threshold Estimation for Speech Recognition (음성인식기 성능 향상을 위한 영상기반 음성구간 검출 및 적응적 문턱값 추정)

  • Song, Taeyup;Lee, Kyungsun;Kim, Sung Soo;Lee, Jae-Won;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.321-327
    • /
    • 2015
  • In this paper, we propose an algorithm for achieving robust Visual Voice Activity Detection (VVAD) for enhanced speech recognition. In conventional VVAD algorithms, the motion of lip region is found by applying an optical flow or Chaos inspired measures for detecting visual speech frames. The optical flow-based VVAD is difficult to be adopted to driving scenarios due to its computational complexity. While invariant to illumination changes, Chaos theory based VVAD method is sensitive to motion translations caused by driver's head movements. The proposed Local Variance Histogram (LVH) is robust to the pixel intensity changes from both illumination change and translation change. Hence, for improved performance in environmental changes, we adopt the novel threshold estimation using total variance change. In the experimental results, the proposed VVAD algorithm achieves robustness in various driving situations.

Mdlti-View Video Generation from 2 Dimensional Video (2차원 동영상으로부터 다시점 동영상 생성 기법)

  • Baek, Yun-Ki;Choi, Mi-Nam;Park, Se-Whan;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.53-61
    • /
    • 2008
  • In this paper, we propose an algorithm for generation of multi-view video from conventional 2 dimensional video. Color and motion information of an object are used for segmentation and from the segmented objects, multi-view video is generated. Especially, color information is used to extract the boundary of an object that is barely extracted by using motion information. To classify the homogeneous regions with color, luminance and chrominance components are used. A pixel-based motion estimation with a measurement window is also performed to obtain motion information. Then, we combine the results from motion estimation and color segmentation and consequently we obtain a depth information by assigning motion intensity value to each segmented region. Finally, we generate multi-view video by applying rotation transformation method to 2 dimensional input images and the obtained depth information in each object. The experimental results show that the proposed algorithm outperforms comparing with conventional conversion methods.

Vision-based Target Tracking for UAV and Relative Depth Estimation using Optical Flow (무인 항공기의 영상기반 목표물 추적과 광류를 이용한 상대깊이 추정)

  • Jo, Seon-Yeong;Kim, Jong-Hun;Kim, Jung-Ho;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.267-274
    • /
    • 2009
  • Recently, UAVs (Unmanned Aerial Vehicles) are expected much as the Unmanned Systems for various missions. These missions are often based on the Vision System. Especially, missions such as surveillance and pursuit have a process which is carried on through the transmitted vision data from the UAV. In case of small UAVs, monocular vision is often used to consider weights and expenses. Research of missions performance using the monocular vision is continued but, actually, ground and target model have difference in distance from the UAV. So, 3D distance measurement is still incorrect. In this study, Mean-Shift Algorithm, Optical Flow and Subspace Method are posed to estimate the relative depth. Mean-Shift Algorithm is used for target tracking and determining Region of Interest (ROI). Optical Flow includes image motion information using pixel intensity. After that, Subspace Method computes the translation and rotation of image and estimates the relative depth. Finally, we present the results of this study using images obtained from the UAV experiments.

System Design and Performance Analysis of 3D Imaging Laser Radar for the Mapping Purpose (맵핑용 3차원 영상 레이저 레이다의 시스템 설계 및 성능 분석)

  • La, Jongpil;Ko, Jinsin;Lee, Changjae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • The system design and the system performance analysis of 3D imaging laser radar system for the mapping purpose is addressed in this article. For the mapping, a push-bloom scanning method is utilized. The pulsed fiber laser with high pulse energy and high pulse repetition rate is used for the light source of laser radar system. The high sensitive linear mode InGaAs avalanche photo-diode is used for the laser receiver module. The time-of-flight of laser pulse from the laser to the receiver is calculated by using high speed FPGA based signal processing board. To reduce the walk error of laser pulse regardless of the intensity differences between pulses, the time of flight is measured from peak to peak of laser pulses. To get 3D image with a single pixel detector, Risley scanner which stirs the laser beam in an ellipsoidal pattern is used. The system laser energy budget characteristics is modeled using LADAR equation, from which the system performances such as the pulse detection probability, false alarm and etc. are analyzed and predicted. The test results of the system performances are acquired and compared with the predicted system performance. According to test results, all the system requirements are satisfied. The 3D image which was acquired by using the laser radar system is also presented in this article.

Segmentation of Intima/Adventitia of IVUS Image using Fuzzy Binarization (퍼지 이진화를 이용한 IVUS 영상의 내막/외막 분할)

  • Kim, Kwang Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1514-1519
    • /
    • 2019
  • IVUS is an intra-operative imaging modality that facilitates observing and appraising the vessel wall structure of the human coronary arteries. IVUS is regularly used to locate the atherosclerosis lesions in the coronary arteries. Auto-segmentation of the vessel structure is important to detect the disorder of coronary artery. In this paper, we propose a simple strategy to extract Intima/Adventitia area effectively using fuzzy binarization from intravascular images. The proposed method apply fuzzy binarization to find the adventitia but apply average binarization to locate the intima since they have different homogeneity of pixel intensity comparing with the environment. In this paper, we demonstrate an effective auto-segmentation method for detecting the interior/exterior of the vessel walls by differentiating the fuzzy binarization result and average binarization result from IVUS image. Important statistics such as Intima-Media Thickness (IMT) or volume of a target area can be easily computed from result.

Pavement Crack Detection and Segmentation Based on Deep Neural Network

  • Nguyen, Huy Toan;Yu, Gwang Hyun;Na, Seung You;Kim, Jin Young;Seo, Kyung Sik
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.9
    • /
    • pp.99-112
    • /
    • 2019
  • Cracks on pavement surfaces are critical signs and symptoms of the degradation of pavement structures. Image-based pavement crack detection is a challenging problem due to the intensity inhomogeneity, topology complexity, low contrast, and noisy texture background. In this paper, we address the problem of pavement crack detection and segmentation at pixel-level based on a Deep Neural Network (DNN) using gray-scale images. We propose a novel DNN architecture which contains a modified U-net network and a high-level features network. An important contribution of this work is the combination of these networks afforded through the fusion layer. To the best of our knowledge, this is the first paper introducing this combination for pavement crack segmentation and detection problem. The system performance of crack detection and segmentation is enhanced dramatically by using our novel architecture. We thoroughly implement and evaluate our proposed system on two open data sets: the Crack Forest Dataset (CFD) and the AigleRN dataset. Experimental results demonstrate that our system outperforms eight state-of-the-art methods on the same data sets.

Enhanced Lung Cancer Segmentation with Deep Supervision and Hybrid Lesion Focal Loss in Chest CT Images (흉부 CT 영상에서 심층 감독 및 하이브리드 병변 초점 손실 함수를 활용한 폐암 분할 개선)

  • Min Jin Lee;Yoon-Seon Oh;Helen Hong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.1
    • /
    • pp.11-17
    • /
    • 2024
  • Lung cancer segmentation in chest CT images is challenging due to the varying sizes of tumors and the presence of surrounding structures with similar intensity values. To address these issues, we propose a lung cancer segmentation network that incorporates deep supervision and utilizes UNet3+ as the backbone. Additionally, we propose a hybrid lesion focal loss function comprising three components: pixel-based, region-based, and shape-based, which allows us to focus on the smaller tumor regions relative to the background and consider shape information for handling ambiguous boundaries. We validate our proposed method through comparative experiments with UNet and UNet3+ and demonstrate that our proposed method achieves superior performance in terms of Dice Similarity Coefficient (DSC) for tumors of all sizes.

Deep Learning-based Interior Design Recognition (딥러닝 기반 실내 디자인 인식)

  • Wongyu Lee;Jihun Park;Jonghyuk Lee;Heechul Jung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.47-55
    • /
    • 2024
  • We spend a lot of time in indoor space, and the space has a huge impact on our lives. Interior design plays a significant role to make an indoor space attractive and functional. However, it should consider a lot of complex elements such as color, pattern, and material etc. With the increasing demand for interior design, there is a growing need for technologies that analyze these design elements accurately and efficiently. To address this need, this study suggests a deep learning-based design analysis system. The proposed system consists of a semantic segmentation model that classifies spatial components and an image classification model that classifies attributes such as color, pattern, and material from the segmented components. Semantic segmentation model was trained using a dataset of 30000 personal indoor interior images collected for research, and during inference, the model separate the input image pixel into 34 categories. And experiments were conducted with various backbones in order to obtain the optimal performance of the deep learning model for the collected interior dataset. Finally, the model achieved good performance of 89.05% and 0.5768 in terms of accuracy and mean intersection over union (mIoU). In classification part convolutional neural network (CNN) model which has recorded high performance in other image recognition tasks was used. To improve the performance of the classification model we suggests an approach that how to handle data that has data imbalance and vulnerable to light intensity. Using our methods, we achieve satisfactory results in classifying interior design component attributes. In this paper, we propose indoor space design analysis system that automatically analyzes and classifies the attributes of indoor images using a deep learning-based model. This analysis system, used as a core module in the A.I interior recommendation service, can help users pursuing self-interior design to complete their designs more easily and efficiently.

Dual Dictionary Learning for Cell Segmentation in Bright-field Microscopy Images (명시야 현미경 영상에서의 세포 분할을 위한 이중 사전 학습 기법)

  • Lee, Gyuhyun;Quan, Tran Minh;Jeong, Won-Ki
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.3
    • /
    • pp.21-29
    • /
    • 2016
  • Cell segmentation is an important but time-consuming and laborious task in biological image analysis. An automated, robust, and fast method is required to overcome such burdensome processes. These needs are, however, challenging due to various cell shapes, intensity, and incomplete boundaries. A precise cell segmentation will allow to making a pathological diagnosis of tissue samples. A vast body of literature exists on cell segmentation in microscopy images [1]. The majority of existing work is based on input images and predefined feature models only - for example, using a deformable model to extract edge boundaries in the image. Only a handful of recent methods employ data-driven approaches, such as supervised learning. In this paper, we propose a novel data-driven cell segmentation algorithm for bright-field microscopy images. The proposed method minimizes an energy formula defined by two dictionaries - one is for input images and the other is for their manual segmentation results - and a common sparse code, which aims to find the pixel-level classification by deploying the learned dictionaries on new images. In contrast to deformable models, we do not need to know a prior knowledge of objects. We also employed convolutional sparse coding and Alternating Direction of Multiplier Method (ADMM) for fast dictionary learning and energy minimization. Unlike an existing method [1], our method trains both dictionaries concurrently, and is implemented using the GPU device for faster performance.