Acknowledgement
본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No. RS-2023-00207947), 보건복지부의 재원으로 한국 보건산업진흥원의 보건의료기술연구개발사업 지원 (HI22C1496) 및 서울여자대학교 학술연구비의 지원(2024)을 받아 수행되었으며 이에 감사드립니다.
References
- H. Sung, J. Ferlay, RL. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal and F. Bray, Global cancer statistics 2020: LOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), pp. 209-249, 2021 https://doi.org/10.3322/caac.21660
- V. Greenberg, I. Lazarev, Y. Frank, J. Dudnik, S. Ariad and I. Shelef, "Semi-automatic volumetric measurement of response to chemotherapy in lung cancer patients: How wrong are we using RECIST?," Lung Cancer,108, pp. 90-95, 2017 https://doi.org/10.1016/j.lungcan.2017.02.017
- S. Hossain, S. Najeeb, A. Shahriyar, Z.R. Abdullah and M.A. Haque, "A pipeline for lung tumor detection and segmentation from CT scans using dilated convolutional neural networks," ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal, pp.1348-1352, 2019.
- H.J. Tuba, M.A. Ullah and F.K. Badhon," Lung Tumor Segmentation and Detection using U-Net with Dilated Convolutions," 5th International Conference on Electrical Information and Communication Technology (EICT), pp. 1-5, 2021.
- F. Zhang, Q. Wang and H. Li, "Automatic segmentation of the grosstarget volume in non-small cell lung cancer using a modified version of ResNet," Technology in Cancer Research & Treatment, 19, 2020.
- J. Lee, J. Jung, H. Hong and B Kim, "Automatic Segmentation of Lung Cancer in Chest CT Images through Capsule Network-based Dual-Window Ensemble Learning," Journal of the Korea Institute of Information Scientists and Engineers, 48(8), pp.905-912, 2021 https://doi.org/10.5626/JOK.2021.48.8.905
- J.G. Jin, Y.J. Kim and KG Kim, "A Study on Lung Cancer Segmentation Algorithm using Weighted Integration Loss on Volumetric Chest CT Image," Journal of Korea Multimedia Society, 23(5), pp. 625-632, 2020. https://doi.org/10.9717/KMMS.2020.23.5.625
- H. Huang, L. Lin, R. Tong, H. Hu, Q. Zhang, Y. Iwamoto, X. Han, Y.W. Chen, and J. Wu, "UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation," IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 1055-1059, 2020.
- O. Ronneberger, P. Fischer, and T. Brox," U-net: Convolutional networks for biomedical image segmentation," Medical Image Computing and Computer-Assisted Intervention (MICCAI ), pp. 234-241, 2015